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1. INTRODUCTION 

The discovery of intrinsically conducting 
polymers like polyacetylene, polyaniline, 
polypyrrole, polythiophene, polyindole, etc. 
have  emerged as a active materials lead to a 
wide range of applications [1-4]. The useful 
properties of these polymers are tunable by 
adding inorganic nanoparticles to them [5]. For 
example, increase of conductivity, dielectric 
constant and dielectric loss with increase of 
V2O5 was recorded in polyaniline-V2O5 
composites [6]. A good thermal stability 
and noticeable crystallinity were observed 
in polyaniline-silver nanocomposites [7]. 
Increased conductivity with metal nanoparticles 
has been measured for polythiophene-nickel 
and polypyrrole-copper nanocomposites [8, 
9]. Increase of magnetization and decrease of 
conductivity were noted for polyaniline-Iron 
nanocomposites [10]. The optical band gap 
decreased and electrical conductivity increased 
in polyaniline when doped with Ag nps [11]. 
These fundamental properties and their 
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variations in different environments for polymer 
composites lead to the applications of the type 
gas sensors, super capacitors, microwave and 
electromagnetic wave absorbers, resistive 
switching devices etc [12-16]. On our extensive 
literature survey, it is learnt that polythiophene-
cobalt nanocomposites have not been explored 
for dielectric and ac conductivity. 

In the present paper the results on morphology, 
dielectric properties and ac conductivity of 
polythiophene-cobalt (PTh-Co) nanocomposites 
are presented. 

2. EXPERIMENTAL PROCEDURE 

AR grade chemicals were used to synthesize 
polythiophene and cobalt nanoparticles. 
By following chemical oxidation method 
polythiophene (PTh) has been synthesized using 
FeCl3 as an oxidizing agent. The reaction has 
been carried out for 24 hours at the temperature 
of 275 K. The precipitate so obtained was filtered 
and washed with methanol and distilled water and 
dried in an oven [17].  
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Cobalt nanoparticles were prepared by 
modified polyol process. Cobaltous chloride 
hexahydrate (CoCl2. 6H2O) and sodium 
hydroxide (NaOH) were separately dissolved 
in 1, 2 propandiol. Both these solutions were 
mixed and stirred and, then treated with 
hydrazine hydrate (N2H4. H2O) 80%. The 
reduction was allowed to take place in the 
temperature range from 328K to 333K. The 
dark grey colour cobalt particles formed were 
collected and washed with distilled water and 
acetone. The powder was dried [18].  

As  prepared PTh and Co particles  were 
mechanically  mixed in  the  proportions, 
PTh1-xCox. where, x = 0.1, 0.2, 0.3, 0.4, 0.5 
and the composites obtained were labeled as 
PTh-CO1, PTh-CO2, PTh-CO3, PTh-CO4 
and PTh-CO5, respectively. The pure PTh, 
cobalt nano powder and the composites were 
investigated for structure by XRD method.

These composites were investigated for 
surface morphology at various magnifications 
by Scanning Electron Microscope (SEM) 
(model JSM 6360) technique. Composites 
were pelletized using a hydraulic press using 
a pressure of 20 kg/cm2. Dielectric properties 
(dielectric constant, ε’ and loss factor, ε’’) 
have been measured in a Wayne kerr make 
Precession Impedance Analyzer [Model No. 
6500B] for the frequency range from 1k 
Hz to 1M Hz and temperature from 303 K 
to 473 K [19]. Temperature was measured 
using Chromel-Alumel thermocouple with an 
accuracy of ±1K. Using dielectric loss factor, 
ε’’, ac conductivity, σac has been determined as 
σ𝑎𝑐 = ε’’ωε0.

3. RESULTS AND DISCUSSIONS

3.1. XRD

The XRD patterns of pure PTh, Cobalt 
nano particles and PTh-Co composites were 
thoroughly examined. It was found that XRD 
patterns of Pure PTh, cobalt nano powder 
and PTh-Co composites exhibited amorphous 
nature with an exemption of two small peaks 
observed for pure PTh and composites at 
2θ values of 33.18° and 35.55° [17-18, 20]. 

These peaks may be due to the residual FeCl3 
particles left in the polymerization process. 
Typical XRD patterns for cobalt nano powder 
and PTh-CO5 are shown in Fig.1 (a) & (b) for 
inspection. 
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Fig. 1. XRD patterns of 
(a) Co-nanoparticles (b) PTh-Co5 composite.

3.2. SEM

From the SEM images shown in Fig. 
2 (a) & (b) respectively for  pure PTh [17] 
and composite PTh-Co5, presence of cobalt 
nanoparticles in polythiophene host matrix 
can be confirmed. A good degree of mixing 
of the PTh and Co-nps can also be judged. 
Similar types of images for the present four 
composites have been observed. Average 
particle size calculated from SEM image of 
the composite is 32 nm. No other experimental 
facilities such as particle size analyzer, TEM 
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etc  were available to determine accurately 
the degree of mixing of PTh and cobalt nano 
particles.

           

Fig. 2. SEM images of  
(a) pure PTh [17] (b) PTh-Co5 composite.

3.3. Dielectric Properties 

Fig. 3 shows variation of dielectric constant as 
a function of frequency at different temperatures 
for the sample PTh-CO1. From this figure, it can 
be noted that, ε’ was high at lower frequencies 
and decreased fast with increase in frequency. 
It increased with increase of temperature. This 
is due to the various polarization effects such 
as electronic, ionic, orientational, interfacial 
space charge polarization, which have different 
relaxation frequencies [21]. Dielectric loss 
factor, ε’’ also exhibited similar trend as that 
of ε’ with respect to frequency and temperature 
as shown in Fig. 4 for PTh-CO1. Decrease of 
ε’ and ε’’ with increase of frequency may be 

due to decrease of ionic component to the total 
polarization with frequency. Further, increase 
of ε’ and ε’’ with temperature may be due to 
weakening of atomic bonds with increase of 
temperature. The same nature has been observed 
in the remainining four composites. Variation 
of ε’ and ε’’ with Co-content at different 
frequencies have been observed and found that 
both of these parameters decrease with Co-
content (Figs. 5 and 6). This implies that dipoles 
are loosing freedom of orientation with respect 
to applied field with increase of Co-content. 
This is similar to the electric dipoles getting 
pinned by the Co-particles in the composites. 
Similar nature of variation of ε’ and ε’’ are seen 
in polythiophene sample [22].  
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Fig. 3. Dielectric constant, ε, versus ln(f) for PTh-Co1 
nanocomposite at different temperatures.

Conductivity, σac has been determined 
using dielectric data using the expression, 
σ𝑎𝑐 = ε’’ωεo.Where, ω is the  angular  
frequency and εο the  permittivity  of free  
space  which  is  equal  to 8.85x10-12 Fm-1. 
Change in conductivity, σac versus  frequency 
for  different temperatures are plotted 
in Fig. 7 for  PTh-Co1 nanocompoiste. 
Here, it can be seen that conductivity 
increased with increase in frequency and 
temperature. Increase in conductivity 
with increase in temperature indicates 
electrically semiconducting behavior of 
the composite. Remaining composites 
of the present series have behaved in the 
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same fashion. Fig.8 shows a decrease in 
conductivity, σac, with increase of cobalt 
nanoparticles. The decrease in σac with 
increase of cobalt particles may be due to 
the barrier offered to the motion of charge 
carriers. AC conductivity as a function of 
temperature has been fit to Mott’s Small 
Polaron Hopping (SPH) model. According 
to this model, conductivity is given by,

                

where, σo is the pre - exponential factor and Ea is 
the activation energy for small polaron hopping.
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Fig. 4. Dielectric loss, ε’’ ,versus ln(f) for PTh-Co1 
nanocomposite at different temperature.

In the Fig. 9, the plots of ln(σacT) versus 
(1/T) for the PTh-CO1 nanocomposites for 
four different frequencies are shown. The data 
of all the composites appeared linear for the 
entire experimental range of temperature. This 
reveals that Mott’s Small Polaron Hopping 
(SPH) is the prevalent conduction mechanism 
in these composites for the temperature range 
studied. The linear lines were fit to the data 
and slope of these linear fits has been used to 
estimate activation energy, Ea, for conduction. 
It is found that Ea decreased with increase of 
frequency. Similar results have been reported 
in PTh-V2O5 and PPy-Cu composites [23, 
24]. Same behavior is observed for the 
remaining present samples (Fig. 10). Ea 
decreased with increase of cobalt content. 

The values obtained are in close agreement 
with the PTh-CoO composites [25].
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Fig. 5. Variation of dielectric constant, ε’ with wt %  
of a cobalt nanoparticles content in polythiophene  

for different frequencies.
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Fig. 6. Variation of dielectric loss, ε’’ ,with wt %  
of cobalt nanoparticles content in polythiophene  

for different frequencies.
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Fig. 7. Variation of conductivity, σac with logarithmic 
frequency, ln(f) for PTh-Co1 nanocomposites at different 

temperatures.
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Fig. 8 Change in conductivity, σac with wt % of Co-nps in 
the composites for different frequencies.
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Fig. 9 Plots of ln(σacT) versus (1/T) for PTh-CO1 
composite for four different frequencies. Solid lines are 

linear fits as per Mott’s SPH model.
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Fig. 10 Activation energy versus wt. % of cobalt for PTh-
Co nano composites at four different frequencies.

To understand the dielectric process in detail, 
the complex electric modulus was determined and 
analyzed. Measured dielectric data was transformed 
to electric modulus. The electric modulus, M* 
represents real dielectric relaxation process which is 
reciprocal of complex permittivity, ε*. That is [26],           

where, M’ and M’’ are the real and imaginary parts 
of the electric modulus respectively.

Table 1. The frequency, fmax and relaxation time, 
 τmax for PTh-Co nanocomposites 

Sample T(K) fmax (Hz)
τmax = 

½π fmax (μs)

PTh-CO1

313 5063.24 198.00

353 19113.61 52.30

393 61147.72 16.40

433 176464.31 5.67

473 257835.69 3.88

PTh-CO2

313 4703.21 213.00

353 16236.22 61.60

393 59041.74 16.90

433 154507.82 6.47

473 251450.14 3.98

PTh-CO3

313 1883.71 531.00

353 10582.95 94.50

393 48581.59 20.60

433 128797.92 7.76

473 257043.34 3.89

PTh-CO4

353 7966.49 126.00

393 38832.00 25.80

433 126247.55 7.92

473 205458.63 4.87

PTh-CO5

353 6124.17 163.00

393 37873.23 26.40

433 104506.02 9.57

473 154662.40 6.47
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 Fig. 11. Frequency dependence of real  
(a) M’ and imaginary (b) M’’ parts of electric modulus,  

M for PTh-CO1 nanocomposite at various temperatures.

Figs. 11 (a) and (b) depicts M’ and M’’ 
versus frequency at different temperatures 
respectively. From the spectrum of M’’ versus 
frequency shown in Fig.11 (b), it can be 
observed that the relaxation peak fmax shifts 
towards higher frequency as the temperature 
increased which indicates that relaxation rate 
increases with increase in temperature [27]. 
Similar result was reported in reference [28]. 
The frequency fmax of the peak is assumed 
to represent a characteristic frequency of 
the conductivity relaxation. The inverse of 
the frequency fmax of the maximum    peak    
position   can   be   taken as   characteristic   
relaxation time, τmax. i.e., τmax = (½)πfmax. 
The τmax versus temperature for the sample 
PTh-CO1 is shown in Fig. 12. The relaxation 

time decreased with increase in temperature. 
The remaining four composites have shown 
the same trend of variation of relaxation time 
with temperature (Table 1). 
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Fig. 12. Relaxation time, τmax versus temperature, T of 
PTh-CO1.

4. CONCLUSIONS

Polythiophene and cobalt nanoparticles 
were synthesized separately and their 
composites were prepared by mixing them 
mechanically. Scanning Electron Microscopy 
(SEM) technique has been used to understand 
the morphology. Dielectric measurements were 
carried out with temperature and frequency 
as input variables. AC conductivity variation 
with temperature indicated semiconducting 
behavior. Conductivity decreased with 
increase of cobalt nanoparticles content 
in the polythiophene matrix revealing the 
insulating effect getting induced in the 
composites with increase of cobalt content. 
Small polaron hopping is found to be the 
conduction mechanism in these composites. 
Activation energy for conduction decreased 
with increase of Co-content. Dielectric 
data was transformed to electric modulus 
and from which dielectric relaxation times 
were estimated. Relaxation time decreased 
with increase of temperature. This is for the 
first time that PTh-Co nanocomposites have 
been thoroughly investigated for dielectric 
properties and ac conductivity.
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