Das S, Ghadai R, Krishna A, Trivedi A, Bhujel R, Rai S, et al . A Comparative Analysis of Structural and Electrochemical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) Synthesized by Using Hummer’s and Modified Hummer’s Method.. IJMSE 2020; 17 (4) :25-32
URL:
http://ijmse.iust.ac.ir/article-1-1830-en.html
Abstract: (9893 Views)
Graphene oxide (GO) and reduced graphene oxide (rGO) is a semiconductor device which finds its many applications in the various electronic devices. In the present study GO and rGO thin sheets have been grown over Si wafers using Hummer’s and modified Hummer’s method and a comparison in the properties of the coatings have been carried out. The morphology of the sheets characterized by SEM revealed similar transparent sheet like structure for both the chemical synthesis. The diffraction pattern of GO and rGO prepared with modified Hummer’s method showed peak shift to lower diffraction angle from 9.96 o to 9.63 o and 26.4 o to 26.3 o respectively. The diffraction peaks were observed at diffraction phase of 001 and 002 crystal plane. FTIR spectra revealed presence of oxygen functional groups in GO thin sheets whereas peaks for oxygen functionalities are absent in rGO. The polarization curve indicated similar corrosion resistance of GO and rGO thin sheets grown under Hummer’s and modified Hummer’s. Capacitive property of rGO is better than GO as observed by the electrochemical analysis of GO and rGO..Graphene oxide (GO) and reduced graphene oxide (rGO) is a semiconductor device which finds its many applications in the various electronic devices. In the present study GO and rGO thin sheets have been grown over Si wafers using Hummer’s and modified Hummer’s method and a comparison in the properties of the coatings have been carried out. The morphology of the sheets characterized by SEM revealed similar transparent sheet like structure for both the chemical synthesis. The diffraction pattern of GO and rGO prepared with modified Hummer’s method showed peak shift to lower diffraction angle from 9.96 o to 9.63 o and 26.4 o to 26.3 o respectively. The diffraction peaks were observed at diffraction phase of 001 and 002 crystal plane. FTIR spectra revealed presence of oxygen functional groups in GO thin sheets whereas peaks for oxygen functionalities are absent in rGO. The polarization curve indicated similar corrosion resistance of GO and rGO thin sheets grown under Hummer’s and modified Hummer’s. Capacitive property of rGO is better than GO as observed by the electrochemical analysis of GO and rGO.
Type of Study:
Research Paper |
Subject:
Ceramics