Showing 21 results for Abbas
Morakabati M., Arabi H., Mirdamadi Sh., Abbasi S.m.,
Volume 2, Issue 2 (Jan 2005)
Abstract
This study was launched to investigate the effects of heating rate and aging parameters on the kinetic of precipitation reactions in a high alloy high strength steel having Ni, Co, Mo and Ti. For this purpose, as quenched specimens were subjected to three types of aging methods with different heating rates. These methods consisted of aging in Pb bath, salt bath, and furnace at different aging cycles. The kinetic of precipitation in each method was studied by hardness measurements and was described adequately by the Johnson-mehl-Avrami equation. Remarkable increase in hardness and its rate is observed when the rate of heating increases. The substantial increase in hardness of the specimens aged rapidly in salt & Pb baths, compared with those aged normally in furnace, seemed to be due to the formation of thermo elastic stresses during sudden expansion of the substance subjected to rapid heating. According to the results obtained in this research, increase in the Avrami constants, n & k, and decrease in the start time of transformation, ts, are associated with heating rate increasing. Analysis of the observed and calculated data for hardness using Arrhenius equation, shows that for the same amount of volume fraction of precipitates, the activation energy of precipitates decreased for f=25 and 50%, while at f=90 % it increased by increasing heating rate.
Abbasi S.m., Shokouh Far A., Ehsani N.,
Volume 3, Issue 3 (Jul 2006)
Abstract
In this study the hot deformation behaviour of a precipitation hardened (PH) stainless steel at high strain rates has been predicted through hot compression testing. Stress-strain curves were obtained for a range of strain rates from 10-3 to 10+1 S-1 and temperatures from 850 to 1150°C. Results obtained by microstructure and stress-strain curves show that at low temperatures and high strain rates, where the Zener-Holman parameter (Z) is high, work hardening and dynamic recovery occure. By increasing temperature and decreasing strain rate, the Z parameter is decreased, so that dynamic recrystallization is the dominant softening mechanism. The results were fitted using a Log Z versus Log (sinh (a sp) diagram allowing an assessment of the behavior of the stresses measured at strain rates closer to those related to the industrial hot rolling schedules. It is clearly shown that the data collected from low strain rate testing can be fairly reasonably extrapolated to higher orders of magnitude of strain rate.
Khodamorad Abbaszadeh, Shahram Kheirandish, Hassan Saghafian,
Volume 7, Issue 3 (summer 2010 2010)
Abstract
The effects of lower bainite volume fraction on tensile and impact properties of D6AC ultrahigh strength steel were studied in the current work. To obtain mixed microstructures containing martensite and different volume fractions of the lower bainite, specimens were austenitized at 910° C, then quenched in a salt bath of 330°C for different holding times, finally quenched in oil. In order to obtain fully martensitic and bainitic microstructures, direct oil quenching and isothermal transformation heat treatment for 24 hours were used respectively. All specimens were double tempered at 200°C for 2 hours per tempered. Microstructures were examined by optical and scanning electron microscopes. Fracture morphologies were studied by scanning electron microscopy (SEM). Results showed that both yield and ultimate tensile strength generally decreased with an increase in volume fraction of lower bainite. However, a few exceptions were observed in the mixed microstructures containing 12% lower bainite, showing a higher strength than the fully martensitic microstructure. This can be explained on the basis of two factors. The first is an increase in the strength of martensite due to the partitioning of the prior austenite grains by lower bainite resulting in the refinement of martensite substructures. The second is a plastic constraint effect leading to an enhanced strength of lower bainite by the surrounding relatively rigid martensite. Charpy V-notch impact energy and ductility is improved with increasing the volume fraction of lower bainite.
A. R. Abbasian, M. R. Rahimipour, Z. Hamnabard,
Volume 10, Issue 3 (September 2013)
Abstract
In order to evaluate the sintering behavior of lithium meta titanate (Li2TiO3) powder, the shrinkage of powder compact was measured under constant rates of heating. Densification curves for Li2TiO3 have been constructed with the help of shrinkage powder measured at different heating rates. The activation energy at the initial stage of sintering was determined by analyzing the densification curves and the value of Q=377 kJ/mol was obtained. The diffusion mechanism at the initial sintering stage was determined by the analytical method applied to the constant rates of heating data. This analysis exhibited that the dominant mechanism for initial sintering stage of Li2TiO3 is volume diffusion from grain boundary and surfaces.
E. Mousavi, M. R. Aboutalebi, S. H. Seyedein, S. M. Abbasi,
Volume 11, Issue 3 (september 2014)
Abstract
The effect of aging time and temperature on the microstructure and mechanical properties of Ti-13V-11Cr-3Al and Ti-13V-11Cr-3Al-0.2C was studied. The carbon addition increases the rate of age hardening as well as the
peak hardness of aged samples. The presence of titanium carbides in Ti-13V-11Cr-3Al-0.2C limits grain growth during
the process. The observations in this work are discussed in terms of the effect of the microstructural changes in
quenched and aged samples associated with the presence of carbide precipitates
M. Ahangarkani, K. Zangeneh-Madar, H. Abbaszadeh, A. A. Rahmani , S. Borgi,
Volume 11, Issue 3 (september 2014)
Abstract
In the present paper, the influence of cobalt additive on the sintering/infiltration behavior of W-Cu composite
was studied. For this purpose, the mixed powders of tungsten and cobalt were compacted by CIP method and then
sintered at 1450, 1550 and 1600 °C in a hydrogen atmosphere. The sintered specimens at 1550 °C were subsequently
infiltrated with liquid copper at 1250 °C for 10, 60 and 120 min. The microstructure and composition of samples were
evaluated using SEM, EDS as well as XRD techniques. The density of the sintered samples was measured by
Archimedes method. Vickers indentation test was used to measurement hardness. It was found that sintering
mechanism of tungsten powder depends on temperature and cobalt additive content. Also, the best infiltration behavior
was observed in the samples with optimum cobalt value. In addition, it was found that the W-W contiguity as well as
dihedral angle decreases as cobalt increases. Density and hardness of infiltrated specimens are attained 16.28-16.79
g.cm-3 and 220-251 VHN, respectively.
M. Abbas, S. Nisar, A. Shah, F. Imtiaz Khan,
Volume 12, Issue 2 (June 2015)
Abstract
Aluminium base alloy (Al-Cu-Si) was reinforced with silicon carbide (SiC) particles, in various percentage
compositions from 0-20 wt%. Silicon carbide particle size of 20µm was selected. The molten slurry of SiC reinforced
base aluminium metal was casted through green and dry sand casting methods and solidification process was carried
out under ambient conditions. A selected population of total casted samples were subjected to T6 heat treatment
process, followed by evaluation of mechanical properties of hardness, tensile strength and impact loading. The micro
sized SiC particles were preheated up to 300C prior pouring into the melted metal, for subsequent removal of residual
gases and moisture content. A continuous manual stirring method was used for homogenous distribution of reinforced
particle in molten slurry. The experimental results revealed that the highest parameters of hardness, impact energy and
tensile strength were achieved in the T6 heat treated specimens having highest percentage composition (20%) of
Silicon Carbide (SiC) particles
D. Gharailou, A. Abbasi,
Volume 12, Issue 3 (September 2015)
Abstract
Effect of electro migration on crystal structures of platinum nanowire (Nano bridge) during Nano-gap
formation is investigated by means of Transmission Electron Microscopy (TEM). Selected area diffraction patterns as
well as bright field images are used for this investigation. There were severely recessions in the polycrystalline Nano
bridge and crystal structures around the nanogap changed completely during electro migration. Due to Joule heating,
original small crystal with random orientation disappeared and newly crystals with a preferred orientation grew. They
have [111] orientations (respect to beam direction) with slight misorientations. α and θ was defined to calculate the
misorientation and used to represent Nano-gap formation mechanism. The calculation gives the breaking of Nano
bridge occurred along grain boundaries in most of Nano bridges. The controlling system during eletromigration may
affect on the shapes of tips so that the shape of tips in Nano bridges, in which feedback control is applied, is more
symmetric than others. The effect of temperature on atomic diffusivity might be the reason of the behaviour. {422}
could be a preferred surface plane for mass transport in platinum Nano bridge in which atoms move along it
A. Abbasian, M. Kashefi, E. Ahmadzade-Beiraki,
Volume 12, Issue 3 (September 2015)
Abstract
Precipitation hardening is the most common method in the strengthening of aluminium alloys. This method
relies on the decrease of solid solubility with temperature reduction to produce fine precipitations which impede the
movement of dislocations. The quality control of aluminium alloy specimens is an important concern of engineers.
Among different methods, non-destructive techniques are the fastest, cheapest and able to be used for all of parts in a
production line. To assess the ability of eddy current as a non-destructive method in the evaluation of precipitation
hardening of aluminium alloys, 7075 aluminium alloy specimens were solution treated at 480°C for 1 hr. and followed
by water quenching. Afterwards, the specimens were aged at different temperatures of 200, 170, 140, 110 and 80°C for
8 hr. Eddy current measurements was conducted on the aged specimens. Hardness measurement and tensile test were
employed to investigate the mechanical properties. It was demonstrated that eddy current is effectively able to separate
the specimens with different aging degree due to the change of electrical conductivity during aging process
N. Alavifard, H. Shalchian, A. Rafsanjani-Abbasi, J. Vahdati Khaki, A. Babakhani,
Volume 13, Issue 3 (September 2016)
Abstract
In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron), which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected to magnetic separation followed by X-ray diffraction analysis. Total iron content, degree of metallization and recovery efficiency in magnetic part were determined by quantitative chemical analysis, which were obtained about 82%, 95% and 64% respectively under optimal conditions. CaO as an additive improved ore reducibility and separation efficiency. The microstructure of reduced samples and final products were analyzed by scanning electron microscopy. Final product with a high degree of metallization can be used in steel making furnaces and charging of blast furnaces which can improve production efficiency and decrease coke usage.
M. Abbasalizadeh, R. Hasanzadeh, Z. Mohamadian, T. Azdast, M. Rostami,
Volume 15, Issue 4 (December 2018)
Abstract
Shrinkage is one of the most important defects of injection molded plastic parts. Injection molding processing parameters have a significant effect on shrinkage of the produced parts. In the present study, the effect of different injection parameters on volumetric shrinkage of two polymers (high-density polyethylene (HDPE) semi-crystalline thermoplastics and polycarbonate (PC) as a representative of amorphous thermoplastics) was studied. Samples under different processing conditions according to a L27 orthogonal array of Taguchi experimental design approach were injected. Effect of material crystallinity on the shrinkage of injected samples was investigated. Obtained results revealed that semi-crystalline thermoplastics have larger shrinkage values in comparison with amorphous thermoplastics. Shrinkages of injected samples were also studied along and across the flow directions. Results showed that the flow path can dramatically affect the shrinkage of semi-crystalline thermoplastics. However for amorphous thermoplastics, results showed an independency of obtained shrinkage to flow direction. Analysis of variance (ANOVA) results illustrated that cooling time was the most effective parameter on shrinkage for both PE and PC injected samples; followed by injection temperature as the second important parameter. The optimum conditions to minimize shrinkage of injection molded samples are also achieved using signal to noise ratio (S/N) analysis.
A. R. Abbasian, M. R. Rahimipour, Z. Hamnabard,
Volume 16, Issue 4 (December 2019)
Abstract
In this work, lithium meta titanate (Li2TiO3) nanocrystallites were synthesized by hydrothermal method and subsequent heat treatment. The shrinkage of the powder compact was measured under constant heating rate in order to study the sintering behavior of the synthesized powders. Densification curves of the synthesized powders were also constructed via the dilatometry analysis and evaluated at several heating rates. Two separate methods of analytical procedure and master curve sintering were employed to determine the activation energy of the initial sintering stage. The activation energy values were estimated based on these two distinct methods as 229±14 and 230 kJ/mol respectively, consistenting with each other. Moreover, surface diffusion was determined as the dominant mechanism of densification on initial sintering of Li2TiO3 nanocrystallites.
E. Abbasi, K. Dehghani, T. Niendorf, S. V. Sajadifar,
Volume 17, Issue 4 (December 2020)
Abstract
The effect of cooling rate after annealing at 900 °C on the microstructure and hardness of high entropy alloys was investigated using two typical samples with the chemical composition of Co16Cr14.5Fe29Mn11.5Ni29 and Co11.5Cr7Fe27Mn27Ni27(Nb0.08C0.5) (at%). The microstructural characterisation and hardness measurements were carried out by optical microscopy, scanning electron microscopy, wavelength-dispersive X-ray spectroscopy, electron back scattered diffraction, X-ray diffraction technique and Vickers hardness testing. A face centred cubic crystal structure matrix was observed in both alloys before and after annealing and regardless of cooling conditions. SEM analyses revealed an extensive precipitation in Co11.5Cr7Fe27Mn27Ni27(Nb0.08C0.5) alloy after annealing. It was also found that air/furnace cooling can enhance grain growth-coarsening just in Co16Cr14.5Fe29Mn11.5Ni29. However, the hardness results generally showed insignificant hardness variations in both alloys after water-quenching, air-cooling and furnace-cooling. The results suggested that the hardness is mainly controlled by solid solution strengthening.
Saleheh Abbaspoor, Farhang Abbasi, Samira Agbolaghi,
Volume 19, Issue 2 (June-Biomaterials Special Issue- 2022)
Abstract
Single crystals of double crystalline block copolymers of poly(ethylene glycol) (PEG)-b-poly(ε-caprolactone) (PCL) and PEG-b-poly(L-lactide) (PLLA) were grown from dilute solution in homo- and mixed-brush systems. Crystallization behavior of biodegradable one end-restricted crystallizable PCL and PLLA chains in homo- and mixed-brush nanostructures were investigated. Chemical and physical circumstances of crystallizable brushes were altered. Physical environment was adjusted by amorphism/crystallinity and rigidity/flexibility of neighboring brushes. Chemical environment was manipulated by interaction and miscibility of various brushes. Distinct single crystals were grown with mixed-brushes of amorphous-crystalline (polystyrene (PS), poly(methyl methacrylate) (PMMA), PCL and PLLA, double crystalline (PCL/PLLA), and rod-crystalline polyaniline (PANI)/PCL or PLLA. Surrounding was only effective on hindrance or nucleation commencement of crystallization for crystallizable brushes and had no effect on crystallization features. Novel three-layer fully single crystalline nanostructures, whose characteristics were fixed via changing the crystallization temperature, were also developed. For long crystallizable tethers, crystallization increased both brush and substrate thicknesses.
Silvana Artioli Schellini, Lucieni Cristina Barbarini Ferraz, Abbas Rahdar, Francesco Baino,
Volume 19, Issue 2 (June-Biomaterials Special Issue- 2022)
Abstract
Biocompatible ceramics, commonly known as “bioceramics”, are an extremely versatile class of materials with a wide range of applications in modern medicine. Given the inorganic nature and physico-mechanical properties of most bioceramics, which are relatively close to the mineral phase of bone, orthopedics and dentistry are the preferred areas of usage for such biomaterials. Another clinical field where bioceramics play an important role is oculo-orbital surgery, a highly cross- and interdisciplinary medical specialty addressing to the management of injured eye orbit, with particular focus on the repair of orbital bone fractures and/or the placement of orbital implants following removal of a diseased eye. In the latter case, orbital implants are not intended for bone repair but, being placed inside the ocular cavity, have to be biointegrated in soft ocular tissues. This article reviews the state of the art of currently-used bioceramics in orbital surgery, highlighting the current limitations and the promises for the future in this field.
Fiza Ur Rehman, Syeda Sohaila Naz, Muhammad Junaid Dar, Annum Malik, Maimoona Qindeel, Francesco Baino, Fazli Wahid, Abbas Rahdar, Saeeda Munir, Sara Qaisar, Kifayat Ullah Shah, Mahtab Razlansari,
Volume 19, Issue 2 (June-Biomaterials Special Issue- 2022)
Abstract
Neoplastic cells have co-opted inflammatory receptors and signaling molecules that potentiate inflammation. Activated inflammatory pathways lead to neo-angiogenesis, lymph-angiogenesis, immunosuppression, tumor growth, proliferation and metastasis. This cancer-sustaining inflammation is a critical target to arrest cancer growth. Multiple drug resistance, high cost, low oral bioavailability and serious side effects have rendered conventional cytotoxic chemotherapeutics less impressive. The aim of this research was to achieve cancer debulking and proliferation prevention by limiting ‘cancer-sustaining’ tumor niche inflammation through non-conventional oral approach employing anti-inflammatory agents and avoiding conventional cytotoxic agents. Synergistic anti-inflammatory agents, i.e. celecoxib as selective COX-2 inhibitor and montelukast as cysteinyl leukotriene receptor antagonist, were selected. Silver nanoparticles (AgNPs) were used as nanocarriers because of their efficient synergistic anti-neoplastic effects and excellent oral drug delivery potential. Specifically, selected drugs were co-conjugated onto AgNPs. Synthesized nanoparticles were then surface-modified with poly(vinyl alcohol) to control particle size, avoid opsonization/preferred cellular uptake and improve dispersion. Surface plasmon resonance analysis, particle size analysis, DSC, TGA, XRD, FTIR and LIBS analysis confirmed the successful conjugation of drugs and efficient polymer coating with high loading efficiency. In-vitro, the nanoparticles manifested best and sustained release in moderately acidic (pH 4.5) milieu enabling passive tumor targeting potential. In-vivo, synthesized nanoparticles exhibited efficient dose-dependent anti-inflammatory activity reducing the dose up to 25-fold. The formulation also manifested hemo-compatibility, potent anti-denaturation activity and dose-dependent in-vitro and in-vivo anti-cancer potential against MCF-7 breast cancer and Hep-G2 liver cancer cell lines in both orthotopic and subcutaneous xenograft cancer models. The anti-inflammatory nanoparticles manifested tumor specific release potential exhibiting selective cytotoxicity at cancerous milieu with slightly acidic environment and activated inflammatory pathways. The formulation displayed impressive oral bioavailability, sustained release, negligible cytotoxicity against THLE-2 normal human hepatocytes, low toxicity (high LD50) and wide therapeutic window. Results suggest promise of developed nanomaterials as hemo-compatible, potent, cheaper, less-toxic oral anti-inflammatory and non-conventional anti-cancer agents.
Mohammad Roostaei, Hossein Aghajani, Majid Abbasi, Behzad Abasht,
Volume 19, Issue 3 (September 2022)
Abstract
This study investigates the synthesis of Al/MoS2 nanocomposite coating by the electro spark deposition (ESD) method for its lubricating properties. ESD method was selected because it is a very easy, rapid, and cost-saving method and the resulting coating has a strong bonding with the substrate. As a substrate, a Ti-6Al-4V alloy sheet containing 6.12 % Al, 4.06 % V, 0.19% Fe, and 0.05 % Ni was used. For coating, an aluminum-molybdenum disulfide composite electrode in the form of a cylindrical rod was employed. Three frequencies of 5, 8, and 11 kHz, three current limits of 15, 25, and 35 amps, and three duty cycles of 50, 60, and 70% were used in the coating operation. AFM analysis was used to study the topography, morphology, and calculate roughness. The samples were then subjected to hardness tests. To determine the wear resistance of the samples, pin on disk tests were performed. XRD analysis was performed to identify the phases on the surface of the coated samples. SEM was used to examine the microstructure of the coating before and after wear testing, in order to determine the wear mechanism. The results indicated that the Al/MoS2 nanocomposite coating was synthesized on the substrate surface. The hardness of the reference sample is 353 Vickers, and that of the coated samples is about 200 Vickers. For the reference sample, the roughness was measured at 15.7 nm, and for the coated sample at 268.1 nm. As spark energy increased, the coefficient of friction increased by approximately 0.09. As spark energy increased, the wear rate increased by 27%. A significant increase in the Lancaster coefficient occurred around 5 joules of energy. According to the wear rate results, the sample with the lowest thickness wears 4% less than the sample with the highest thickness. The wear rate of sample 351170 is 78% lower than that of sample 150550.
Saman Sargazi, Mahtab Ghasemi Toudeshkchouei, Abbas Rahdar, Aisha Rauf, Soheil Amani, Razieh Behzadmehr, Ana M. Diez-Pascual, Francesco Baino, Muhammad Bilal,
Volume 20, Issue 1 (March 2023)
Abstract
As a major global cause of liver disease, non-alcoholic fatty liver disease (NAFLD) is characterized by excessive hepatocellular accumulation of lipids in the liver, elevated levels of hepatic enzymes, and fibrotic evidence. The primary therapies for NAFLD are changing lifestyle or managing comorbid-associated diseases. Lately, nanotechnology has revolutionized the art of nanostructure synthesis for disease imaging, diagnosis, and treatment. Loading drugs into nanocarriers has been established as a promising strategy to extend their circulating time, particularly in treating NAFLD. In addition, considering a master modulator of adipogenesis and lysosomal biogenesis and function, designing novel nanostructures for biomedical applications requires using biodegradable materials. Various nanostructures, including inorganic nanoparticles (NPs), organic-based NPs, metallic nanocarriers, biodegradable polymeric nanocarriers, polymer-hybrid nanocarriers, and lipid-based nanocarriers have been designed for NAFLD treatment, which significantly affected serum glucose/lipid levels and liver function indices. NPs modified with polymers, bimetallic NPs, and superparamagnetic NPs have been used to design sensitive nanosensors to measure NAFLD-related biomarkers. However, certain limitations are associated with their use as diagnostic agents. The purpose of this review article is to shed light on the recent advancements in the field of nanomedicine for the early diagnosis, treatment, and prognosis of this progressive liver disease.
Mohammad Abankar, Hossein Arabi, Mohammad Taghi Salehi, Majid Abbasi,
Volume 20, Issue 1 (March 2023)
Abstract
The aims of this research were to evaluate the effects of different thermomechanical treatments on the microstructure and investigate some of the mechanical properties of a TWIP steel rich in Mn & Al. So, a block of a TWIP steel with nominal composition Fe-17.5Mn-1.36Al-0.8C was cast and then subjected to hot rolling followed by cold rolling and heat treatment. Cold rolling was performed before heat treatment in order to reduce the grain size and improve the tensile and fatigue properties. X-ray diffraction technique was used before and after the heat treatment to evaluate the possibility of any phase formation. No sign of martensitic transformation after cold deformation was observed. However, by increasing the amount of cold deformation, the number of mechanical twins and slip band increased resulted to an increase in hardness and strength. The best tensile and fatigue result were obtained after 47% thickness reduction and annealing at 715˚C for 10 min. Under these conditions, the mean grain size reduced from 138 to 9 μm resulted to an increase in yield strength from 395 to 510 MPa, and the fatigue life improvement from the mean life of 10200 for the cast sample to 21500 cycles for the treated sample, when these samples underwent fatigue tests at a stress range of 650 MPa and R=0. In addition, the diameter and depth of dimples in fracture surfaces decreased by reducing the grain size but the fracture mode was remained ductile and adequate plastic deformation occurred before failure.
Parisa Rastgoo Oskoui, Mohammad Rezvani, Abbas Kianvash,
Volume 20, Issue 2 (June 2023)
Abstract
Abstract
The effect of different heat-treatment temperatures on the magnetic, crystallization, and structural properties of 20SiO2.50FeO.30CaO (mol%) glass ceramics was studied. The initial glass was synthesized by the sol-gel method at 25℃ with a precursors to solvent ratio of 1/5. After aging the resulted gel for 24 h at room temperature, it was dried in an electric dryer at 110 ℃ . By heat treatment at different temperatures, different phases such as magnetite, maghemite, and hematite were crystallized in the glass. The maximum stability temperature of magnetite and maghemite were 360℃ and 440℃ respectively. By increasing the heat treatment temperature to higher than 440℃ , the oxidation of maghemite to hematite was occureds. The highest magnetization amount (1.9 emu/g) belonged to sample heat treated at 680℃ . By increasing the heat treatment temperature to 840℃ , the magnetization decreased to 0.8 emu/g, due to the oxidation of maghemite. By increasing the heat treatment temperature from 440℃ to 680℃ , crystalline size of maghemite was increased from 40 to 200 nm. By forther increment of temperature to 840℃ , the size of maghemite crystals decreased to 17nm, due to the oxidation of maghemite to hematite.
Abstract
The effect of different heat-treatment temperatures on the magnetic, crystallization, and structural properties of 20SiO2.50FeO.30CaO (mol%) glass ceramics was studied. The initial glass was synthesized by the sol-gel method at 25℃ with a precursors to solvent ratio of 1/5. After aging the resulted gel for 24 h at room temperature, it was dried in an electric dryer at 110 ℃ . By heat treatment at different temperatures, different phases such as magnetite, maghemite, and hematite were crystallized in the glass. The maximum stability temperature of magnetite and maghemite were 360℃ and 440℃ respectively. By increasing the heat treatment temperature to higher than 440℃ , the oxidation of maghemite to hematite was occureds. The highest magnetization amount (1.9 emu/g) belonged to sample heat treated at 680℃ . By increasing the heat treatment temperature to 840℃ , the magnetization decreased to 0.8 emu/g, due to the oxidation of maghemite. By increasing the heat treatment temperature from 440℃ to 680℃ , crystalline size of maghemite was increased from 40 to 200 nm. By forther increment of temperature to 840℃ , the size of maghemite crystals decreased to 17nm, due to the oxidation of maghemite to hematite.