Search published articles


Showing 2 results for Dole

V. Mote, B. Dole,
Volume 12, Issue 1 (march 2015 2015)
Abstract

Mn doped ZnO nanocrystals were prepared by co-precipitation route sintered at 450 °C temperature. XRD results indicate that the samples having hexagonal (wurtzite) structure. From X-ray data it is found that the lattice parameters increase with increasing Mn concentration. The X-ray density decreases with increasing Mn concentration of Zn 1-x Mnx O nanocrystals. It indicates that the Mn ions go into the Zn site in the ZnO lattice structure. TEM results reveal that the pure and Mn substituted ZnO samples are spherical in shape with average particle size about 20-60 nm. The crystalline size and lattice strain were evaluated by Williamson-Hall (W-H) analysis using X-ray peak broadening data. All other relevant physical parameters such as strain, stress and energy density were calculated by the different models Viz, uniform deformation model (UDM), uniform deformation stress model (UDSM) and Uniform deformation energy density model (UDEDM) considering the Williamson-Hall analysis. These models reveal different strain values it may be due to the anisotropic nature of the material. It is found that the mean particle size of Zn 1-x MnxO nanoparticles was estimated from TEM analysis, Scherrer’s formula & W-H analysis is highly comparable
Yugen Kulkarni, Niketa Pawar, Namrata Erandole, Muskan Mulani, Mujjamil Shikalgar, Swapnil Banne, Dipali Potdar, Ravindra Mane, Smita Mahajan, Prashant Chikode,
Volume 21, Issue 1 (March - Special Issue 2024)
Abstract

The paper investigates the solar photodegradation of Methylene Blue dye using copper oxide (CuO) thin films synthesized by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The structural, morphological, and optical characteristics of the CuO thin films have been investigated by employing a variety of methods, such as Fourier transform Infrared (FTIR) spectroscopy, UV-Vis spectroscopy, Scanning electron microscopy (SEM), and X-ray diffraction (XRD). The outcomes showed that CuO thin films with excellent surface shape and a highly crystalline nature had been successfully deposited. Methylene Blue was subjected to solar radiation during its photodegradation process, and the outcomes showed a significant decrease in the dye's concentration over time. To maximize the photo degradation process, the effects of other experimental factors were also assessed, such as the starting concentration of MB, the quantity of CuO thin film, number of SILAR cycles and the pH of the solution. Good photocatalytic activity is demonstrated by CuO thin films produced using the SILAR approach in the solar photodegradation of methylene blue. The development of affordable and ecologically friendly wastewater treatment technology that can use sun energy to break down persistent organic contaminants is affected by these findings.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb