Search published articles


Showing 2 results for H. Yoozbashizadeh

M. Nusheh*, H. Yoozbashizadeh,
Volume 7, Issue 2 (Spring 2010 2010)
Abstract

Abstract:

the competition between the precipitation of cobalt ions and evolution of hydrogen gas on the cathode surface during

the reduction process in a sulfate bath, investigation on the mechanism of metal precipitation is of great importance.

In the present work, study on the kinetics of cobalt electrowinning and the mechanism of the involved reactions have

been carried out. The obtained results, confirm the mechanism of cobalt precipitation by depletion of hydroxides. The

effects of temperature and scan rate parameters were studied on electrowinning of cobalt by cyclic voltammetry

technique. The diffusion coefficient and rate constant of the reactions were measured and calculated by performed

experiments.

Nowadays cobalt is mostly produced through the electrowinning process of sulfate solutions. Regarding to

M. Aazami, H. Yoozbashizadeh, A. K. Darban, M. Abdolahi,
Volume 10, Issue 4 (december 2013)
Abstract

The orthogonal array design has been used to determine the optimum conditions for gold recovery from Zarshuran refractory gold sulfide ore (Iran) by direct cyanidation and roasting-cyanidation. The Taguchi method was used as the experimental design to determine the optimum conditions of dissolution behavior of gold with cyanidation and roasting-cyanidation from Zarshuran refractory gold ore . The experimental conditions were studied in the range of 10–12 for pH, 20-40 for time(h), 400-1200 for cyanide content (g/ton) and 30 -40 for percent solid(%). Orthogonal array (OA) L9 (34) consisting of four parameters each with three levels, was chosen. From this study for direct cyanidation the total optimum gold dissolution (30.11%) obtained at pH (10), Time (40 h), Cyanide content (800g/ton) and Percent solid (30%). Also for roasting- cyanidation the total optimum gold dissolution (34.96%) obtained at pH (12), Time (40 h), Cyanide content (1200g/ton) and Percent solid (35%).

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb