Search published articles


Showing 3 results for HOMAYONIFAR P.

Attar E., Babaei R., Homayonifar P., Asgary K., Davami P.,
Volume 1, Issue 4 (Jul 2004)
Abstract

During mold filling, molten metal can only advance as quickly as the air inside thecavity is expelled. In this work an analytical model describing air flow is developed based on aincompressible flow theory. Air pressure has serious effects upon the filling behaviour such assurface profile and filling time. In this work a new mathematical model is proposed for calculationthe air pressure during the mold filling. A single phase computational fluid dynamic code based onthe SOLA-VOF algorithm used for prediction the fluid flow. Air discharged through the vents ismodelled by ideal gas assumption, conservation of mass equation and Bernoulli law. A newalgorithm was developed to interpolates the air pressure on the surface cell. The creation of airback pressure was correlated with sizes of vents and pouring basin height. In order to verify thecomputational results a series of experimental test was conducted. Comparison between theexperimental data and simulation results has shown a good agreement.
Homayonifar P., Saboohi Y., Firouz Abadi B.,
Volume 2, Issue 4 (Jul 2005)
Abstract

Iron and steel is an energy intensive industry and its contribution to the pollution of environment is considerable. Direct reduction iron (DRI) is a major element of an iron and steel production plant. Its share in natural gas and electricity consumption of total plant is estimated to be 70% and 15% respectively. Reduction gases are produced in natural gas reforming unit and its elements are CO and H2. A major consequence of using this technology is high level of CO2 emission, which pollutes the environment. An alternative to the existing technology is utilization of H2 as reducing agent. A comparison of various hydrogen production processes indicate that thermal decomposition of methane provides an attractive option from economical and technical point of view. Therefore, a system for producing hydrogen, based on thermal decomposition technique, has been designed in the framework of the present paper.
Babaei R., Shahinfar S., Homayonifar P., Dadashzadeh M., Davami P.,
Volume 3, Issue 3 (Jul 2006)
Abstract

In the present study a Finite Difference Method has been developed to model the transient incompressible turbulent free surface fluid flow. A single fluid has been selected for modeling of mold filling and The SOLA VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. For modeling the turbulence phenomena k-e standard model was used. In order to achieve an accurate model, solving domain was discrete to three regions includes: laminar sub layer, boundary layer and internal region. This model was applied to experimental models such as a driven cavity, Campbell benchmark [1] and top filled cavity. The results show that the suggested model yield favorable predictions of turbulence flow and have a good consistency in comparing with experimental results.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb