Showing 2 results for J. Javadpou
M. Ebrahimi-Basabi,, J. Javadpour,, H. Rezaie, M. Goodarzi,
Volume 6, Issue 1 (winter 2009 2009)
Abstract
Abstract: Nano- size alumina particles have been synthesized by mechanical activation of a dry powder mixture of
AlCl3 and CaO. Mechanical milling of the above raw materials with the conditions adopted in this study resulted in
the formation of a mixture consisting of crystalline CaO and amorphous aluminum chlorides phases. There was no
sign of chemical reaction occurring during milling stage as evidenced by x-ray diffraction studies. Subsequent heat
treatment of the milled powder at 350ºC resulted in the occurrence of displacement reaction and the formation of
Al2O3 particles within a water soluble CaCl2 matrix. The effect of higher temperature calcinations on the phase
development in this powder mixture was followed by X-ray diffraction (XRD) analysis and scanning electron
microscope ( SEM). Differential thermal analysis (DTA) was used to compare the thermal behavior between the
milled and unmilled powders. Perhaps the most important result in this study was the observation of á-Al2O3 phase
at a very low temperature of 500ºC.
F. Foroutan, J. Javadpou, A. Khavandi, M. Atai, H. R. Rezaie,
Volume 8, Issue 2 (spring 2011 2011)
Abstract
Abstract: Composite specimens were prepared by dispersion of various amounts of nano-sized Al2O3 fillers in a monomer system containing 60% Bis-GMA and 40% TEGDMA. For comparative purposes, composite samples containing micrometer size Al2O3 fillers were also prepared following the same procedure. The mechanical properties of the light- cured samples were assessed by three-point flexural strength, diametral tensile strength, and microhardness tests. The results indicated a more than hundred percent increase in the flexural strength and nearly an eighty percent increase in the diametral tensile strength values in the samples containing nano-size Al2O3 filler particles. It is interesting to note that, this improvement was observed at a much lower nano-size filler content. Fracture surfaces analyzed by scanning electron microscopy, indicated a brittle type of fracture in both sets of specimens.