Prabhakar Kuppahalli, Ramaiah Keshavamurthy, Padmanathan Sriram, Ahobal Narayana,
Volume 18, Issue 2 (June 2021)
Abstract
The present investigation aims to synthesize RB031, RB032 manganese bronze alloys equivalent to HTB1 and HTB2 alloys with additions of silicon and to characterize them with the help of Microstructure and Mechanical properties. The methodology involves melting of alloy’s in a 300kg Coreless medium frequency induction furnace, casting them in Permanent and Shell moulds with optimum values of Zinc equivalent and retaining their high mechanical properties. The study includes the development and mechanical property measurements of the alloys synthesized. Characterization has been carried out using Optical Microscopy and Scanning Electron Microscopy with EDAX analysis for investiagtion of compositional variations and inquisition of hardness measurement & tensile properties. It is concluded from this work that RB032 alloy cast in Permanent moulds has superior hardness and tensile properties compared to Shell moulds and far exceeds that of NAB (AB2) alloys processed under similar conditions. Further, this investigation includes grain refinement by suitable Heat treatment studies to combat Hot Tearing since the strength is adequate enough with RB032 exhibiting higher hardness than other two alloys.
Deepak Jagannathana, Hiriyannaiah Adarsha, Keshavamurthy Ramaiah, Ramkumar Prabhud,
Volume 20, Issue 3 (September 2023)
Abstract
Several extensive researches are being carried out in the field of 3D printing. Polymer matrices, such as High-Density Polyethylene (HDPE), are less explored in particular on the microstructure and mechanical properties of HDPE composites developed via Fused Deposition Modelling (FDM) process. Very scarce amount of works is devoted to study HDPE’s reinforced with carbon nano-tubes (CNT’s) . In the present work, we report on the mechanical properties of HDPE composites prepared via FDM process. Varying proportions of CNTs ( 0.5, 1, 1.5 and 2%) are used as reinforcements. It is found that increasing CNT content enhances impact and tensile strength, with HDPE/2.0%CNT outperforming pure HDPE by approximately 71.6% and 25.4%, respectively. HDPE/2.0%CNT composite also showed Young's modulus approximately 49.2% higher than pure HDPE. According to fracture analysis, pure HDPE failed near ductile, whereas composites failed brittle. CNTs occupy the free positions in the polymeric chains, and their tendency to restrict chain mobility causes HDPE to lose ductility and begin to behave brittle. The use of CNTs as reinforcement successfully improved the mechanical properties of HDPE.