Search published articles


Showing 2 results for Rizwan

Muhammad Shahzad Sadiq, Muhammad Imran, Abdur Rafai, Muhammad Rizwan,
Volume 21, Issue 2 (June 2024)
Abstract

With increasing energy demand and depletion of fossil fuel resources, it is pertinent to explore the renewable and eco-friendly energy resource to meet global energy demand. Recently, perovskite solar cells (PSCs) have emerged as plausible candidates in the field of photovoltaics and considered as potential contender of silicon solar cells in the photovoltaic market owing to their superior optoelectronic properties, low-cost and high absorption coefficients. Despite intensive research, PSCs still suffer from efficiency, stability, and reproducibility issues. To address the concern, the charge transport material (CTM) particularly the electron transport materials (ETM) can play significant role in the development of efficient and stable perovskite devices. In the proposed research, we synthesized GO-Ag-TiO2 ternary nanocomposite by facile hydrothermal approach as a potential electron transport layer (ETL) in a regular planar configuration-based PSC. The as synthesized sample was examined for morphological, structural, and optical properties using XRD, and UV-Vis spectroscopic techniques. XRD analysis confirmed the high crystallinity of prepared sample with no peak of impurity. The optimized GO-Ag-TiO2 ETL exhibited superior PCE of 8.72% with Jsc of 14.98 mA.cm-2 ,Voc of 0.99 V, and a fill factor of 58.83%. Furthermore, the efficiency enhancement in comparison with reference device is observed which confirms the potential role of doped materials in enhancing photovoltaic performance by facilitating efficient charge transport and reduced recombination. Our research suggests a facile route to synthesize a low-cost ETM beneficial for the commercialization of future perovskite devices.
 
Muhammad Rizwan,
Volume 22, Issue 1 (March 2025)
Abstract

Powder-based Physical Vapor Deposition (PPVD) was utilized to deposit doped TiO2 thin layers, to modify electronic and optical properties. The modification was performed using different dopants (MnO2, Ta2O5, Nb2O5) at different concentrations (0.05 and 0.1 mol%) respectively. The structural characterization by FESEM reveals that the size of the grain varied with respect to the dopants. The sample doped at lower concentration demonstrates a larger crystallite size than the sample doped at higher concentration. This trend is consistent with the measured grain size of the doped thin layer samples. The nonlinearity coefficient (α) and breakdown voltage at lower ranges are enhanced as the dopant concentration in the TiO2 lattice increases due to the reduction of grain size. While, the optical properties of doped TiO2 thin layers with respect to energy bandgap demonstrated enhancement trend with the addition of the dopant as revealed by UV-Vis’s reflectance analysis. The enhancement of electrical and optical properties is contributed by the formation of barrier layer surrounding the grains, which in return increases the conductivity of the doped TiO2 thin layers sample. Conclusively, this study demonstrates the feasibility of the PPVD method in producing a dense thin layer structure for further optical and electrical based applications.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb