Showing 6 results for Shahri
A. Zakeri,, M. Sh. Bafghi, Sh. Shahriari,
Volume 4, Issue 3 (Summer &Autumn 2007 2007)
Abstract
Abstract: In this paper, kinetics of reductive leaching of manganese dioxide ore by ferrous ion in
sulfuric acid media has been examined. Experimental results show that increasing temperature
from 20 to 60 °C and decreasing ore particle size from −16+20 to −60+100 mesh considerably
enhance both the dissolution rate and efficiency. Molar ratios of Fe2+/MnO2 and H2SO4/MnO2 in
excess to the stoichiometric amounts were needed for successful manganese dissolution. Under the
optimum condition (ore particle size of −60+100 mesh, Fe2+/MnO2 molar ratio of 3.0,
H2SO4/MnO2 molar ratio of 2.0) manganese could be extracted with over 95% efficiency by 20
minutes leaching at room temperature. A kinetic analysis based on dimensionless time method
showed that shrinking core – ash diffusion control model fits the experimental results reasonably
well. Value of activation energy was found to be 28.1 kJ/mole for the proposed mechanism.
Z. Shahri, S.r. Allahkaram,
Volume 9, Issue 4 (December 2012)
Abstract
Metal matrix composite coatings reinforced with nano-particles have attracted scientific and technological interest due to the enhanced properties exhibited by these coatings. Cobalt/hexagonal boron nitride nano-composite coatings were prepared by means of the pulse current electroplating from a chloride electrolyte on copper substrates and a comparison was made with the pure cobalt in terms of structure and tribological properties. Effects of particles concentration (5-20 gL-1) and current density (50-200 mA cm-2) on the characterization of electroplated coatings were investigated via X-ray diffraction analysis, energy dispersive spectroscopy and Vickers micro-hardness. Moreover, the tribological behavior was studied using pin-on-disc method. The results showed that cobalt/hexagonal boron nitride nano-composite coatings have higher hardness, wear resistance and lower friction coefficient than pure cobalt and the plating parameters strongly affect the coating’s properties
Sh. Shahriari, M. Ehteshamzadeh,
Volume 10, Issue 1 (march 2013)
Abstract
Abstract: Plasma electrolytic oxidation (PEO) technique was used to prepare ceramic coatings on the casted aluminum alloys containing ~5 and ~9.5 wt.% Mg. The applied voltage was controlled at 450V and 550V for evaluating the effect of this main parameter, as well as, magnesium content of the substrate on the microstructure and electrochemical corrosion behavior after PEO treating. The results of X-ray diffraction confirmed formation of galumina and MgSiO3. It was found that higher applied voltage caused fewer and minor discharge channels which led to higher corrosion resistance. Also, increasing of magnesium content of the substrate caused decreasing of polarization resistance, which could be associated to the formation of MgSiO3.
Z. Shahri, S. R. Allahkaram,
Volume 10, Issue 4 (december 2013)
Abstract
Metal matrix nano composite coatings possess enhanced properties such as corrosion and wear resistance. This paper aims to study the corrosion behavior of pure Co and Co-BN nano composite coatings deposited with different particles concentration (5-20 g L-1) on copper substrates using electroplating technique. Morphology and elemental compositions of the coatings were investigated by means of scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). The corrosion behavior was analyzed in a 3.5 wt% NaCl via polarization and impedance techniques. The results obtained in this study indicate that the co-deposition of BN nano particles improved corrosion resistance of electrodeposited cobalt coatings.
M. Siadat-Cheraghi, S. R. Allahkaram, Z. Shahri,
Volume 12, Issue 1 (march 2015 2015)
Abstract
Pure cobalt coatings were electrodeposited on copper substrate by means of direct electric current in a
chloride solution at different current densities in the range of 10-70 mA cm
-2
. The surface morphology and
microstructure were investigated via X-ray diffraction analysis and scanning electron microscopy. Corrosion behavior
of cobalt coatings was also studied in a 3.5 wt% NaCl solution using potentiodynamic polarization and impedance
spectroscopy techniques. The results showed that corrosion resistance of deposits was strongly influenced by the
coating’s morphology. Co deposit obtained in lower current densities exhibited the highest corrosion resistance, due
to their lower grain boundaries and so the least density of active sites for preferential corrosion attacks
Seyed Farzad Dehghaniyan, Shahriar Sharafi,
Volume 21, Issue 2 (June 2024)
Abstract
Mechanical alloying was employed to synthesize a nanostructured alloy with the chemical formula of (Fe80Ni20)1-xCrx (x= 0, 4). The microstructural and magnetic properties of the samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and a vibrating sample magnetometer (VSM). Additionally, theoretical calculations were performed using density functional theory (DFT) under the generalized gradient approximation (GGA). Simulations have demonstrated that an appropriate quantity of chromium (Cr) can dissolve within the BCC-Fe (Ni) structure, resulting in a favorable enhancement of the magnetic moment of the lattice. The XRD results indicated that after 96 hours of milling, Fe (Ni) and Fe (Ni, Cr) with a body-centered cubic (BCC) structure were formed. With increasing milling time, the grain size decreased while the microstrain increased. The saturation magnetization (Ms) of Fe80Ni20 composition increased up to 32 hours of milling, but further milling (up to 96 h) resulted in a decrease in the saturation magnetization However, for the (Fe80Ni20)96Cr4 powders, milling up to 64 h caused a reduction in Ms. The coercivity (Hc) trend was different and increased with longer milling times (up to 96 h) for both compositions.