H. Shalchian, A. Farbod, H. Beygi, S. A. Sajjadi,
Volume 12, Issue 1 (march 2015 2015)
Abstract
High energetic aluminum nanoparticles are mainly used as additive in solid rocket propellants. However,
fabrication of these aluminized energetic materials is associated with decreasing the burning rate of propellants due
to problems such as oxidation and agglomeration of nanoparticles. In this study, to improve combustion performance
of aluminum nanoparticles, coating by metallic Ni shell was studied. Nickel coating of aluminum nanoparticles was
performed through electroless deposition (ED) subsequently, morphology and chemical composition of Ni-coated
nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM),
energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). These studies show that a uniform Ni layer with a
thickness of 10nm is coated on the surface of Al nanoparticles. Thermal analysis of uncoated and Ni-coated aluminum
nanoparticles was done using differential thermal analysis (DTA) and thermo gravimetric analysis (TGA). The results
of thermal analysis indicate that, coating the aluminum particles by Ni, leads to improvement in combustion
performance of aluminum nanoparticles through decreasing critical ignition temperature, ignition delay time of the
nanoparticles and promoting the ignition by exothermic chemical reactions between Al and Ni
N. Alavifard, H. Shalchian, A. Rafsanjani-Abbasi, J. Vahdati Khaki, A. Babakhani,
Volume 13, Issue 3 (September 2016)
Abstract
In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron), which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected to magnetic separation followed by X-ray diffraction analysis. Total iron content, degree of metallization and recovery efficiency in magnetic part were determined by quantitative chemical analysis, which were obtained about 82%, 95% and 64% respectively under optimal conditions. CaO as an additive improved ore reducibility and separation efficiency. The microstructure of reduced samples and final products were analyzed by scanning electron microscopy. Final product with a high degree of metallization can be used in steel making furnaces and charging of blast furnaces which can improve production efficiency and decrease coke usage.