Search published articles


Showing 44 results for Hot

Hossein Momeni, Sasan Ranjbar Motlagh,
Volume 21, Issue 3 (9-2024)
Abstract

The present work deals with the hot deformation behavior of commercial Nb alloy C-103 and its microstructure evolution during uniaxial compression tests in the temperature range of 700-1100 °C and the strain rate range of 0.001-0.4 s-1. Strain rate sensitivity, calculated from the compression tests data, was almost constant and showed a negative value in the temperature range of 700-900 °C but increased significantly beyond 900 °C. Dynamic strain aging was found to have a predominant effect up to 900 °C, beyond which dynamic recovery and oxidation influenced the compressive properties. The microstructure of the deformed samples showed indications of dynamic recrystallization within the high strain rate sensitivity domain and features of flow instability in the regime of low strain rate sensitivity. The 950–1000 °C temperature range and strain rate range of 0.001-0.1 s-1 were suggested as suitable hot deformation conditions. The constitutive equation was established to describe the alloy's flow behavior, and the average activation energy for plastic flow was calculated to be 267 kJ/mol.
 
Yofentina Iriani, Novia Puspita, Dianisa Sandi, Fahru Nurosyid, Risa Suryana, Didier Fasquelle,
Volume 21, Issue 4 (12-2024)
Abstract

In this research, Lanthanum (La)-doped Strontium Titanate (STO) with the formula of Sr1-xLaxTiO3 (LSTO; x=0, 0.03, 0.05, and 0.07) powders have been successfully fabricated by co-precipitation route. The impacts of La3+ on the structural, microstructure, band-gap, and photocatalytic activity for the degradation of organic pollutants, in this case, methylene blue, under UV exposure, were reported in detail. The formation of undoped and La-doped STO samples with cubic perovskite structures was confirmed by X-ray Diffraction (XRD) results. The presence of La doping affected the microstructure morphology by producing LSTO powders with a larger specific surface area. Besides, the UV absorption of the LSTO powders was enhanced due to the narrowed band gap caused by La3+ dopants. Accordingly, an improvement in photocatalytic activity applied for the photodegradation of methylene blue solution was exhibited by the LSTO samples.
Seyed Mohammad Mirghasemi, Ehsan Mohammad Sahrifi, Gholam Hossein Borhani, Mirtaher Seyed Beigi,
Volume 21, Issue 4 (12-2024)
Abstract

In this study, the hot deformation and dynamic recrystallization behavior of low carbon steel containing 21 ppm boron was investigated. After homogenizing the samples at 1250 ℃ for 1-hour, hot compression tests were conducted at temperatures ranging from 850 ℃ to 1150 ℃ and strain rates from 0.01 to 10 s⁻¹, resulting in strain-stress flow curves. Following corrections, calculations and modeling were performed based on Arrhenius equations. Among them, the hyperbolic sine relationship provided the most accurate estimate and was selected as the valid model for the applied strain range. According to this model, the deformation activation energy (Q), was determined to be 293.37 KJ/mol. Additionally, critical and peak stress and strain values were obtained for each temperature and strain rate, and power relationships were established to describe their variation with respect to the Zener-Hollomon parameter (Z). Recrystallization fractions were derived by comparing the hypothetical recovery curves with the material flow curves, and the results were successfully modeled using the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. The Avrami exponent was measured at approximately 2, indicating that nucleation predominantly occurred at grain boundaries. Microstructural analysis revealed that at higher Z values, recrystallization occurred along with a fraction of elongated grains, while lower Z values resulted in a greater fraction of equiaxed dynamic recrystallization (DRX) grains. The average grain sizes after compression tests at 950 ℃, 1050 ℃, and 1150 ℃ were measured as 21.9 µm, 30.4 µm, and 33.6 µm respectively at a strain rate of 0.1 s⁻¹, and 17.7 µm, 28.7 µm, and 31.3 µm at 1 s⁻¹. The overall microstructure displayed a more uniform grain size distribution with increasing deformation temperature.
Hella Houda, Guettaf Temam Elhachmi, Hachemi Ben Temam, Saâd Rahmane, Mohammed Althamthami,
Volume 21, Issue 4 (12-2024)
Abstract

In this study, we thoroughly examine β-Bi2O3 thin films as potential photocatalysts. We produced these films using an environmentally friendly Sol Gel method that is also cost-effective. Our research focuses on how different precursor concentrations, ranging from 0.1 M to 0.4 M, affect the photocatalytic performance of these films. We conducted a comprehensive set of tests to analyze various aspects of the films, including their structure, morphology, topography, optical properties, wettability, and photocatalytic capabilities. These tests provided us with a well-rounded understanding of the films' characteristics. To assess their photocatalytic efficiency, we used Methylene Blue (MB) as a contaminant and found that the films, particularly those with a 0.1 M concentration, achieved an impressive 99.9% degradation of MB within four hours. The 0.1 M film had a crystalline size of 39.7 nm, an indirect band gap of 2.99 eV, and a contact angle of 51.37°. Our findings suggest that β-Bi2O3 films, especially the 0.1 M variant, have promising potential for treating effluents from complex industrial dye processes. This research marks a significant step in utilizing sustainable materials to address pollution and environmental remediation challenges.

Page 3 from 3     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb