Search published articles


Showing 76 results for Sol

A. Kermanpur, H. Ebrahimiyan, A. Heydari, D. Heydari, M. Bahmani,
Volume 14, Issue 4 (12-2017)
Abstract

Formation of stray grain defects particularly around re-entrant features of the turbine blade airfoils is one of the major problems in directional and single crystal solidification processes. In this work, directional solidification tests of the GTD-111 Ni-based superalloy were conducted at different withdrawal velocities of 3, 6 and 9 mm.min-1 using various stepped cylindrical and cubic designs. The process was also simulated using ProCAST finite element solver to characterize the crystal orientations. The phase transformation temperatures of the superalloy were estimated by the differential scanning calorimetry test. A process map was developed to predict the formation of stray grains in the platform regions of the stepped cylindrical and cubic specimens using the experimentally-validated simulation model. The process map shows critical values of the platform size, withdrawal velocity and initial sample size for the stray grain formation. The withdrawal velocity, platform size and initial sample size all had an inverse effect on the formation of stray grains.

G. Maghouli, B. Eftekhari Yekta,
Volume 15, Issue 1 (3-2018)
Abstract

Commercial dental lithium disilicate based glass-ceramics containing various amounts of P2O5 were synthesized. Regarding the crystallization behavior and physico-chemical properties of the glasses, the optimum percent of P2O5 was determined.as 8 %wt.
Crystallization behavior of the glasses was investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). The micro-hardness and chemical resistance of both glass and glass-ceramic searies were also determined.
According to our results, lithium phosphate was precipitated prior to crystallization of the main phases, i.e lithium meta silicate and lithium disilicate. This early precipitation led to evacuation of residual glass phase from lithium ions, which caused increasing the viscosity of glass and so shifting of crystallization to higher temperatures.
In addition, increasing in P2O5 amounts and consequently increasing in Li3PO4, led to significant decrease in the crystallite size and aspect ratio  of crystals.
Furthermore, while the chemical resistance of the glasses was decreased with P2O5, it was increased with P2O5 after heat treatment process.
The chemical solubility of these three glass-ceramics was between 2080~1188 μg/cm2.

M. Krishna, R. Nandini, A.v. Suresh, K. Narasimha Rao ,
Volume 15, Issue 2 (6-2018)
Abstract

An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichiometric in nature. The obtained nano particles showed phase transition from orthorhombic to tetragonal crystal structure without any secondary phases. The high relative density and tetragonality ratio of KNN ceramics obtained through optimized sintering parameters yielded with significant piezoelectric and ferroelectric properties.
 

F. Salehtash, H. Banna Motejadded Emrooz, M. Jalaly,
Volume 15, Issue 2 (6-2018)
Abstract

Mesoporous SiO2 nanopowder was synthesized under an acidic condition by a sol-gel method using various amounts of cetyltrimethyl ammonium bromide (CTAB) as structure directing agent. The samples were investigated with XRD, SEM, FTIR, TEM and N2 absorption-desorption analysis. Also, the incremental effect of surfactant were examined. The results obtained from the analysis suggested that an increase in the amount of surfactant resulted in increasing specific surface area, pore size and pore volume, of the synthesized particles up to 549 m2.g-1, 17.3 nm, and 2 cm3.g-1, respectively. Absorption behavior of the mesoporous silica was investigated for degradation of methylene blue pigments (MB) in aqueous solutions. The samples SC0, SC0.5 and SC1 showed the maximum absorption capacities of 333, 454 and 526 mg/g, respectively
R. Ubaid, S. Saroj Kumar, S. Hemalatha,
Volume 15, Issue 3 (9-2018)
Abstract

Drug resistant pathogenic microbes have been causing serious health issues resulting in the substantial increase of death rates and morbidity paving the way for nanoparticles to be utilized as antimicrobial agents. This study was performed to evaluate the effectiveness of CuNPs on the growth of drug resistant clinical isolates of Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis. Minimum inhibitory concentration of CuNPs against Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis was found to be 1.25. 1.25 and 0.625 mg/ml and minimum bactericidal concentration against the same isolates was found to be 2.5, 2.5 and 5 mg/ml respectively. The ratio of MBC/MIC, referred to as tolerance level, was calculated for all the isolates which signifies the bactericidal or bacteriostatic effect of any antimicrobial agent. For Streptococcus pyogenes and Enterococcus faecium, the tolerance level was 2 while as for Enterococcus faecalis, it was 8. Antibiotic susceptibility results were calculated which showed that the isolates were resistant to Ampicillin (10 µg), Amoxycillin (30 µg) and Aztreonam (30 µg). Susceptibility results were followed by calculating multiple antibiotic resistance indices (MARI). MARI is an important tool which gives an idea about the bacterial resistance in a given population. For all the three isolates, MARI results were equivalent to 1 because of their resistance towards all the three antibiotics used. Antimicrobial activity through well-plate method was carried out and inhibitory effect of CuNPs on biofilm formation was evaluated.
 

H. Esfandiar, S. M. Hashemianzadeh, S. Saffary, S. Ketabi,
Volume 15, Issue 3 (9-2018)
Abstract

Gold nanoparticles have become common in many applications of biotechnology due to their specific properties. Shape and size are important attributes which affect their solubility in water. In this study, the outcomes of Monte Carlo Simulation for the solvation of gold nanorods in aqueous solution with the different radii, in terms of solvation free energy, are discussed. Simulation results show a negative solvation free energy for all the samples with radii of 4 to 9Å. The results show that the absolute values of solvation free energy for gold nanorods with smaller radius are larger, which indicate the dependency between the gold nanorods solvation and their radius.
N. Maragani, K. Vijaya Kumar,
Volume 15, Issue 4 (12-2018)
Abstract

An attempt has been focused to develop a new aluminum ion conducting non aqueous polymer electrolyte for high power rechargeable batteries having applications in rapidly growing markets, such as laptops, handy tele communication equipments, electric vehicles, camcorders, etc. These features have given a thrust to develop a suitable Nano composite GPE based on  PAN as polymer host and Sodium fluoride (NaF) as dopant salt and Al2O3 as nano filler in the form of thin films through solution casting technique consuming N,N-dimethyl formamide (DMF) as a common solvent. NCGPE films have been prepared by solution casting technique. The XRD pattern of 70PAN-30NaF with addition of wt% Al2O3 ceramic filler indicates reducing degree of crystallinity. Using IR studies revealed that the complexation of the polymer poly (acrylonitrle) with NaF. The conductivity of the GPEs was studied with enhancement of nano fillers. The sample containing 3% of Al2O3 exhibits the highest conductivity of 4.82x10-3S cm-1 at room temperature (303K) and 5.96x10-3S cm-1 at 378K. With the help of Wagner’s polarization technique electronic (te) and ionic (ti) values can be determined.To determine profiles of discharge characteristics (70PAN-30NaF-3wt% Al2O3) NCGPE solid-state electrochemical cell was fabricated and various cell profiles were evaluated

M. Fallah Tafti, M. Sedighi, R. Hashemi,
Volume 15, Issue 4 (12-2018)
Abstract

In this study, the microstructural variations, mechanical properties and forming limit diagrams (FLD) of Al 2024 aluminum alloy sheet with the thickness of 0.81mm are investigated during natural ageing (T4) treatment. The most formability in Al 2024 can be achieved just after solution treatment, and it is better to perform the forming process, on this aluminum alloy sheet, in this condition. However, in industrial applications, there is usually a postponement for some hours after solution treatment to begin the forming process that it means the forming process should be done at the natural ageing condition. This condition decreases the formability of Al 2024 sheets. To monitor the properties variations in natural ageing condition, FLDs are determined after specific times (e.g., 0.5, 1.5, 4 and 24 hours). The variations in micro-hardness, yield strength, ultimate tensile strength and elongation at break are observed with changing the ageing time. The scanning electron microscope (SEM) investigations illustrated that density and size of precipitates are changed with ageing time. Moreover, the Nakazima test is utilized to study the forming limits considering the natural ageing condition. Results show by increasing the ageing time, up to 4hr, the majority of properties variations could be seen, and from 4hr to 24hr, the variations are changed slower.
M. Tavakoli Harandi, M. Askari-Paykani, H. Shahverdi, M. Nili Ahmadabadi,
Volume 16, Issue 1 (3-2019)
Abstract

One-step and two-step annealing techniques were used to examine the relationship between microstructure and mechanical properties during compression tests in iron-based ribbons and nanostructured 1- and 2.5mm cylindrical rods. The X-ray diffraction, microstructural, and mechanical results showed that substituting Nb for Fe had a minor effect on glass-forming ability but increased the formability index. The novel two-step annealing process resulted in a remarkable formability index of 16.62 GPa, yield stress of 2830 MPa, ultimate strength of 3866 MPa, and 4.3% plastic strain. A ductile nanosized α-Fe framework and boron-containing nano precipitations, which caused Zener pinning effect, were responsible for these novel mechanical properties.

M. Karimi Sahnesarayi, H. Sarpoolaky, S. Rastegari,
Volume 16, Issue 2 (6-2019)
Abstract

In this study nanosized TiO2coatings on the 316L stainless steel substrate were prepared by means of dip-coating technique in which thickness of the coating layer increased byrepeating the coating cycles in two different routes: (I) dipping and drying,respectively, were repeated one, three and five times and finally the dried coated sample was heat treated (single); (II) multiple heat treatment performed after each dipping and drying cycle, respectively.The structural, morphological and optical characterizations of coatings as well as thickness of coatings were systematically studied.The photocatalytic activity of the various TiO2 coatings was investigated based on the degradation of an aqueous solution of Methyl orange.Moreover, thecorrosion protective properties of coatings were evaluated in both dark and UV illumination conditions based on the obtained polarization curves. The results indicated 1.75 times improvement in photocatalytic reaction rate constant, a two orders of magnitude decrease in corrosion current density in dark condition and about 140 mV electrode potential reduction under UV illumination with optimum coating preparation procedure, repeating the cycle from dipping to heat treatment three times, than the sample prepared with one time coating and heat treatment since this procedure provided not only high thickness and defect-free coating but also transparent one.

M. Mahdi, A. Abdul-Hameed, B. Ali, H.f Al-Taay,
Volume 17, Issue 1 (3-2020)
Abstract

Silicon nanowires (SiNWs) are synthesized through a metal-assisted chemical etching (MACE) method using Si(100) substrates and silver (Ag) as a catalyst. Scanning electron microscope (SEM) images confirmed that length of prepared SiNWs was increased when etching time increased. The prepared SiNWs demonstrated considerably low light reflectance at a wavelength range of 200–1100 nm. The photoluminescence (PL) spectra of the grown SiNWs showed a broad emission band peaked at a wavelength of about 750 nm. A solar cell and photodetector based on heterojunction SiNWs/PEDOT:PSS were fabricated using SiNWs that prepared with different etching time and its J–V, sensitivity, and time response were investigated. The conversion efficiency of fabricated solar cell was increased from 0.39% to 0.68% when wire length decreased from 24 µm to 21 µm, respectively. However, the sensitivity of the heterojunction SiNWs/PEDOT:PSS photodetector was decreased from 53774% to 36826% when wire length decreased from 24 µm to 21 µm, respectively.

M. Hamdi, H. Saghafian Larijani, S. G. Shabestari, N. Rahbari,
Volume 17, Issue 3 (9-2020)
Abstract

Aluminum matrix composites are candidate materials for aerospace and automotive industries owing to their specific properties such as high elastic modulus (E), improved strength and low wear rate. The effect of thixoforming process on the wear behavior of an Al-Mg2Si composite was studied in this paper. During applying thixoforming process, casting defects  such as macrosegration, shrinkage and porosity are being effectively reduced. These advantages are sufficient to attract more exploration works of thixoforming operation. Thermal analysis of the composite, as-cast microstructure, wear surface and subsurface area of the thixoformed alloy were  investigated. Wear behavior of  the specimens were examined using a pin-on-disk machine  based on ASTM-G99, at the applied loads of 25, 50 and 75 N and the constant sliding velocity of 0.25m/s. The worn surfaces and subsurfaces were examined by scanning electron microscopy (SEM). The experimental results indicated that the thixoformed specimens exhibited superior wear resistance than the as-cast alloy. Moreover, the dominant wear mechanism is an adhesive wear followed by the formation of a mechanical mixed layer (MML). However, a severer wear regime occurs in the as cast specimens compared with the thixoformed ones

Najwa Gouitaa, Lamcharfi Taj-Dine, Bouayad Lamfaddal, Abdi Farid, Mohamed Ounacer, Mohammed Sajieddine,
Volume 18, Issue 2 (6-2021)
Abstract

    The structural and dielectric properties of iron and bismuth co-substituted BaTiO3 ceramic with the formula: B0.95Bi0.05Ti1-xFexO3 for x=0.00 to 1.00, synthesis with solid state route, were characterized.     The X-ray diffraction results show a tetragonal phase for x=0.00. While for x=0.40 to 0.80 we observed a coexistence of tree phase tetragonal, hexagonal and pseudo-cubic. And at x=1.00 only the pseudo-cubic phase is present and the other phase disappeared. The Raman results indicate the existence of tetragonal band for x≤0.40, and an appearance of characteristic bands of Fe3+ ions for more than 0.40 of Fe content. The SEM micrographs show an increase in grain size with the increase of Fe content and it reaches a maximum at x=0.40.  And the Mossbauer spectroscopy indicates that our samples is paramagnetic at room temperature and that the Fe is   oxidized under Fe3+ with no existence of Fe2+ and Fe4+ ions. The temperature dependence of dielectric permittivity was investigated in the frequency range from 20 Hz to 2MHz. The results show three dielectric relaxation phase transitions from a rhombohedral ferroelectric to orthorhombic ferroelectric (TR-O) then to a tetragonal ferroelectric phase (at TO-T), and finally to cubic paraelectric at the Curie temperature (TC).  In addition, the temperature of phase transition shifted to the lower temperature with the increase of Fe content for all the phase transitions. And the maximum of dielectric permittivity increases for TR-O while for TT-O and Tm phases transitions, it reaches a maximum at x=0.60 and x=0.80 respectively and then decreases.

Saeed G. Shabestari, Sahar Ashkvary, Farnaz Yavari,
Volume 18, Issue 3 (9-2021)
Abstract

The influence of melt superheating treatment on the solidification characteristics and microstructure of Al–20%Mg2Si in-situ composite has been investigated. The results revealed that melt superheating temperature has a significant effect on solidification parameters and morphology of primary Mg2Si particles. Solidification parameters acquired using cooling curve thermal analysis method, indicate that both nucleation temperature and nucleation undercooling of primary Mg2Si particles increase by increasing melt superheating temperature, while recalescence undercooling decrease under the same condition. Also, based on the microstructural evaluations, melt superheating treatment can refine primary Mg2Si particles and alter their morphology from dendritic shape to more spherical shape and the eutectic microstructure of a-Al + Mg2Si becomes finer and the distance between eutectic layers becomes smaller.
 

Najwa Gouitaa, Lamcharfi Taj-Dine, Abdi Farid , Ahjyaje Fatima Zahra,
Volume 18, Issue 3 (9-2021)
Abstract

      In this study we have synthesis the Zr substituted BaTi0.80Fe0.20O3 ceramics at different content of Zr from x=0.00 to 0.10 by using the solid-state route. The room temperature X-ray diffraction results confirmed the coexistence of the two tetragonal and hexagonal phases for x ≤ 0.050 of Zr content. While above 0.050 the hexagonal phase disappears in benefit of tetragonal phase. The Raman results confirmed the formation of these phases obtained with XRD. The scanning electron micrographs consist of both spherical and straight grain forms for x=0.000 to 0.075, and only spherical grain form for x=0.100 attributed to the tetragonal phase. Also, the grain size increases accompanied with a decrease in density of ceramics with increasing Zr content up to 0.050 then decreases accompanied with an increase in density. Detailed studies of dielectric permittivity measurement have provided a presence of two anomalies Te and TR-O at different temperatures, with a relaxation phenomenon and diffuse behavior which is very important for ceramic at x=0.075 of Zr content. The dielectric permittivity values of the two anomalies of Zr substituted BaTi0.80Fe0.20O3 ceramics increase with increase of Zr content and the dielectric loss is minimal at x=0.100 of Zr content. The conductivity increases with the increasing of Zr substitution from 0.025 to 0.075 levels while for x = 0.100 the dielectric conductivity decreases.  And the Cole-Cole analysis indicates a negative thermal resistivity coefficient (NTCR) behavior of these materials and an ideal Debye-type behavior.

Hamed Tavakoli, Mohammad Reza Aboutalebi, Hossein Seyedein, Seyed Nezameddin Ashrafizadeh,
Volume 18, Issue 3 (9-2021)
Abstract

Solvent extraction of samarium from aqueous solutions by two different types of extractants, namely D2EHPA and PC88A, in kerosene was investigated. Through identification of speciation diagrams, the chemically stable complexes of samarium in different acidic solutions (H2SO4, HCl and HNO3) were first investigated. Regarding the various types of samarium species in sulfate medium in comparison with other acidic environments, H2SO4 and HNO3 media were chosen to examine the extraction behavior of samarium complexes. Thermodynamic parameters of samarium extraction reactions by D2EHPA and PC88A from aqueous solutions of HNO3 and H2SO4 were calculated as ∆G (D2EHPA-HNO3),  , ∆G (D2EHPA-H2SO4) , ∆G (PC88A-HNO3), ∆G (PC88A-H2SO4)  equal to -5.58, 3.40, 6.70 and 14.26, and respective ΔHº values equal to -9.38, -2.75, 4.01 and 16.95 kJ/mol, respectively. According to the results, D2EHPA seemed to be a more efficient extractant than PC88A and nitric aqueous solution was a better media than the sulfuric one. The synergistic effect of binary extractants revealed that synergistic factors were 2.94 and 5.74 in sulfuric and nitric solutions, respectively, for a D2EHPA:PC88A ratio of 2:3. The compositions of extracted complexes by D2EHPA and PC88A in sulfuric and nitric solutions were SmH3A6 and SmH3B6, respectively. Thermodynamic parameters of extraction reactions were calculated to be Ke equal to 9.513, 0.254, 0.067, and 0.003 and ∆S (D2EHPA-HNO3),  , ∆S (D2EHPA-H2SO4) , ∆S (PC88A-HNO3), ∆S (PC88A-H2SO4) equal to -12.75, -20.64, -9.03, and 9.03 (J mol-1), respectively.
Sara Ahmadi, Bijan Eftekhari Yekta, Hossein Sarpoolaky, Alireza Aghaei,
Volume 18, Issue 4 (12-2021)
Abstract

In the present work, monolithic gels were prepared through different drying procedures including
super critical, infrared wavelengths and traditional drying methods. Dense and transparent glasses
were obtained after controlled heat treatment of the dried porous xerogels in air atmosphere.
The chemical bonding as well as different properties of the prepared gels and the relevant glasses
were examined by means of Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmitt-
Teller (BET) and UV-Vis spectrometer. Based on the obtained results, different drying conditions
affect the average pore size and the total pore volume of the studied gels. The mean pore size was
found to be 8.7 nm, 2.4 nm and 3.2 nm for super critical, IR radiation and slow drying in air
atmosphere, respectively. The glass network structure was significantly changed by heat treatment  temperature so that the B-O-Si bonds were formed only after 450 °C. It was found that the gel dried under super critical condition was unable to reach to its full density all over the selected sintering temperature interval.
 

Muhammad Muzibur Rahman, Shaikh Reaz Ahmed,
Volume 18, Issue 4 (12-2021)
Abstract

This paper reports the wear behavior of Cu, high Cu-Sn alloy, high Cu-Pb alloy and high Cu-Sn-Pb alloy under dry sliding at ambient conditions. These four materials were chosen for the wear resistance characterization of SnPb-solder affected old/scraped copper (high Cu-Sn-Pb alloy) to explore its reusing potentials. Wear tests were conducted using a pin-on-disk tribometer with the applied load of 20N for the sliding distance up to 2772 m at the sliding speed of 0.513 ms-1. The applied load was also changed to observe its effect. The investigation reveals that the presence of a little amount of Sn increased the hardness and improved the wear resistance of Cu, while a similar amount of Pb in Cu reduced the hardness but improved the wear resistance. The general perception of ‘the harder the wear resistant’ was found to match partially with the results of Cu, Cu-Sn alloy and Cu-Sn-Pb alloy. Coefficient of friction (COF) values revealed non-linearly gradual increasing trends at the initial stage and after a certain sliding distance COF values of all four sample materials became almost steady. SnPb-solder affected Cu demonstrated its COF to be in between that of Cu-Pb alloy and Cu-Sn alloy with the maximum COF value of 0.533.
Mohammad Reza Zamani Meymian, Razieh Keshtmand,
Volume 18, Issue 4 (12-2021)
Abstract

Tin oxide (SnO2) is used as an electron transport layer (ETL) in perovskite solar cells with a planar
structure due to its good transparency and energy level alignment with the perovskite layer. The modification
interface of the electron transport layer and the perovskite absorber layer plays an important role in the efficient
charge extraction process at the interface. In this study, planar perovskite solar cells with configuration
(FTO/SnO2/mixed-cation perovskite/CuInS2/Au) were prepared to investigate the effect of UV-Ozone (UVO) treated
SnO2 as ETL on the performance of devices. ETL treatment was performed at different times (0 to 60 min). It is
shown that surface wetting was improved by UVO treating the SnO2 films prior to deposition of the perovskite layer.
The latter improves the contact between the ETL and the perovskite layer, allowing more efficient electron transport
at the interface. Contact angle, SEM, photoluminescence spectra, and the current density-voltage tests were
conducted to characterize the photovoltaic of the cells. The best PSC performance with a power conversion
efficiency of 10.96% was achieved using UVO-treated SnO2 ETL for 30 min, whereas the power conversion
efficiency of the perovskite solar cells with SnO2 ETL without UVO treatment was only 4.34%.

Morteza Hadi, Omid Bayat, Hadi Karimi, Mohsen Sadeghi, Taghi Isfahani,
Volume 19, Issue 1 (3-2022)
Abstract

In this research, the effect of initial microstructure and solution treatment on rollability and crystallographic texture of a Cu-Mn-Ni-Sn alloy has been investigated. The initial tests indicated that the rolling of the alloy at different temperature conditions is not possible due to formation of second phases. Herein to eliminate the segregated phases, according to DTA analysis, proper temperature for solution treatment was selected as 750°C applied at different periods of time. The obtained results showed that after 15-hour solution treatment, the complete elimination of Sn, Mn, Ni, and Fe-rich phases can be achieved. Also, the peaks of XRD shifted to the higher angles indicating that the alloying elements are dissolved. Meanwhile, the intensity of the texture reduced and the dominant texture changed from Goss and Brass-texture to Copper-texture. Accordingly, the amount of maximum total reduction at the rolling process increased from 16.37 to 109.46 after solution treatment.


Page 3 from 4     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb