Search published articles


Showing 76 results for Sol

Omid Sharifi, Mohammad Golmohammad, Mozhdeh Soozandeh, Mohammad Oskouee,
Volume 19, Issue 3 (9-2022)
Abstract

Li7La3Zr2O12 (LLZO) garnets are one of the promising materials as electrolytes for solid-state batteries. In this study, Li7-3xAlxLa3Zr2O12 (x= 0.22, 0.25, and 0.28) garnet is synthesized using the combustion sol-gel method to stabilize the cubic phase for higher ionic conductivity. The X-ray diffraction (XRD) results of as-synthesized powders reveal that by addition of 0.22 and 0.25 mole Al, the tetragonal phase still co-exist, whereas 0.28 mole Al addition resulted in a single cubic phase. Afterward, the as-synthesized powders are pressed and sintered at 1180°C for 10h. The hardness evaluation revealed that Al addition increases the hardness that shows better resistance against Li dendrite formation. Besides, the secondary electron microscopy results demonstrate that the dopant has not a huge impact on particle size and grain growth whereas the porosity content has been changed. Finally, the investigation of samples' electrochemical behavior reveals that the addition of Al increases the ionic conductivity of samples by increasing the density and stability of the cubic phase as well. The results declare that the 0.25 Al sample has the highest ionic conductivity. This behavior is thought to be due to the promotion of sintering and increment of bulk ionic conductivity by doping Al.
Mohammad Alipour,
Volume 20, Issue 1 (3-2023)
Abstract

The effect of Strain-Induced Melt-Activated (SIMA) Process, ultrasonic treatment (UST) and Al-5Ti-1B refiner on the microstructure and globularity of Al–15%Mg2Si composite was studied. Deformation of 25% were used. After deformation the samples were heated at 560, 580 and 595 °C for 5, 10, 20 and 40 min. The composite was treated with different amounts of the Ti concentrations and ultrasonic treatment with different power. Microstructural study was carried out on the alloy. It was observed that SIMA process, ultrasonic treatment and Al-5Ti-1B refiner has caused the globular morphology of Mg2Si particles. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 595 °C and 20 min respectively. Optimum amount of Ti refiner is 1 wt.% and power for UST is 1800W. After applying the SIMA process, Al-5Ti-1B master alloy and ultrasonic treatment, the strength and engagement have increased. This means that tensile strength increases from 251 MPa to 303 MPa and elongation percentage improves from 2.1 to 3.4, respectively.
 
Parasuraman Dhanasekaran, Ramakrishnan Marimuthu,
Volume 20, Issue 1 (3-2023)
Abstract

Fossil fuels served as the main source of energy throughout the 1800s when the industrial revolution got underway. Countries started aiming for carbon-neutral footprints and lowered emissions as environmental degradation became more apparent. Numerous research projects have been undertaken to discover a photovoltaic device that can replace conventional silicon (Si)-based solar cells. Dye-sensitized solar cells (DSSCs) have undergone extensive research during the past three decades. Due to their straightforward preparation process, low cost, ease of production, and low toxicity, DSSCs have seen extensive use. The reader will be able to comprehend the numerous types of TCO layers, physical methods for depositing metal oxide on TCO thin films, materials for fabricating the various DSSC layers, and the various types of dyes included in DSSC as well as their components and structures. The reader's ability to construct the DSSC, gain a general understanding of how it operates, and increase the effectiveness of these devices' potential growth and development paths are all aided by this review. For these technologies to be debated and shown to be appropriate for a breakthrough in consumer electronics on the market, manufacturing, stability, and efficiency improvements must also be addressed in the future. An overview of current DSSC prototype development and products from major firms is presented.
 
Parisa Rastgoo Oskoui, Mohammad Rezvani, Abbas Kianvash,
Volume 20, Issue 2 (6-2023)
Abstract

Abstract
The effect of different heat-treatment temperatures on the magnetic, crystallization, and structural properties of 20SiO2.50FeO.30CaO (mol%) glass ceramics was studied. The initial glass was synthesized by the sol-gel method at 25  with a precursors to solvent ratio of 1/5. After aging the resulted gel for 24 h at room temperature, it was dried in an electric dryer at 110 . By heat treatment at different temperatures, different phases such as magnetite, maghemite, and hematite were crystallized in the glass. The maximum stability temperature of magnetite and maghemite were 360  and 440  respectively. By increasing the heat treatment temperature to higher than 440 , the oxidation of maghemite to hematite was occureds. The highest magnetization amount (1.9 emu/g) belonged to sample heat treated at 680 . By increasing the heat treatment temperature to 840 , the magnetization decreased to 0.8 emu/g, due to the oxidation of maghemite. By increasing the heat treatment temperature from 440  to 680 , crystalline size of maghemite was increased from 40 to 200 nm. By forther increment of temperature to 840 , the size of maghemite crystals decreased to 17nm, due to the oxidation of maghemite to hematite.
Abstract
The effect of different heat-treatment temperatures on the magnetic, crystallization, and structural properties of 20SiO2.50FeO.30CaO (mol%) glass ceramics was studied. The initial glass was synthesized by the sol-gel method at 25  with a precursors to solvent ratio of 1/5. After aging the resulted gel for 24 h at room temperature, it was dried in an electric dryer at 110 . By heat treatment at different temperatures, different phases such as magnetite, maghemite, and hematite were crystallized in the glass. The maximum stability temperature of magnetite and maghemite were 360  and 440  respectively. By increasing the heat treatment temperature to higher than 440 , the oxidation of maghemite to hematite was occureds. The highest magnetization amount (1.9 emu/g) belonged to sample heat treated at 680 . By increasing the heat treatment temperature to 840 , the magnetization decreased to 0.8 emu/g, due to the oxidation of maghemite. By increasing the heat treatment temperature from 440  to 680 , crystalline size of maghemite was increased from 40 to 200 nm. By forther increment of temperature to 840 , the size of maghemite crystals decreased to 17nm, due to the oxidation of maghemite to hematite.
 
Amirreza Sazvar, Seyed Mohammad Saeed Alavi, Hossein Sarpoolaky,
Volume 20, Issue 2 (6-2023)
Abstract

We report a simple and practical approach for the easy production of superhydrophobic coatings based on TiO2-SiO2@PDMS. In this study, we used tetraethylorthosilicate (TEOS) and titanium tetraisopropoxide (TTIP) as a precursor for the sol-gel synthesis of SiO2 and TiO2, respectively. Afterward, the surface of nanoparticles was modified by 1,1,1,3,3,3-hexamethyldisilazane (HMDS) before being combined with polydimethylsiloxane (PDMS). The hydrophobic property of coatings was evaluated by static contact angle measurements. The phase composition and structural evolution of the coatings were examined by X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. It was shown that changing the weight ratio of the solution composition of the coating can affect the hydrophobicity of the surface. The best sample has shown a superhydrophobic property with a 153˚ contact angle which contained (75%TiO2-25%SiO2) and PDMS at a weight ratio of 1:1. Moreover, the results showed that the superhydrophobic coating retains its hydrophobic properties up to a temperature of 450 ˚C, and at higher temperatures, it converts to a super hydrophilic with a water contact angle close to 0 ˚. The SiO2-TiO2@PDMS coating degrades methylene blue by about 55% and was shown to be capable of photocatalytically decomposing organic pollutants.
Maryam Salehi, Milad Dadashi, S. Parsa Kashani Sani,
Volume 20, Issue 2 (6-2023)
Abstract

In the present study, bulk refined-structured Al 5083 alloy with high mechanical properties was successfully fabricated by hot consolidation process of nanostructured melt- spun flakes. The influence of cooling rate and pressing conditions on the microstructure and mechanical properties of the alloy were investigated using X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), microhardness, and compression tests. Rapid solidification combined with the hot consolidation at T=753 K (480 °C) and P= 800 MPa for 20 min produced a bulk sample with the desirable bonding, good microhardness (184.2±12.4 HV), and high strength (273±8 MPa) combined with 7 pct. fracture strain. These amounts are 78.6±5.1 HV, 148 ±9 MPa and about 5 pct. for the as-cast sample. Microstructural refinement during the controlled consolidation of nanostructure rapidly- solidified flakes contributes to such high mechanical properties of the bulk sample.

 
Husna Hanifa, Eka Cahya Prima, Andhy Setiawan, Endi Suhendi, Brian Yuliarto,
Volume 20, Issue 3 (9-2023)
Abstract

In the third generation of solar cells, cheaper absorbent layers such as Cu2ZnSnS4 (CZTS) have been developed with specifications similar to Cu2InGaS4 (CIGS). This CZTS material is known as a material with good structural and optical properties where the CZTS material has a series of atoms bonded to each other to form a kesterite or stannite crystal arrangement. In its use as an absorbent layer for solar cells, CZTS material is synthesized using the electrochemical deposition method. In this electrochemical deposition technique, an electrical circuit will be connected to the electrode and inserted into the electrolyte. Several voltage variations from 1 volt to 5 volts will be applied to the electrical circuit, which will then trigger ions from the precipitating material in the electrolyte to stick to one of the electrodes. Variation of deposition voltage was carried out to determine the effect of deposition stress on the electrochemical deposition method on the characteristics of the CZTS absorbent layer. The characterizations used are X-Ray Diffraction (XRD), UV-Vis Spectrometry, and I-V meter. XRD results show that the resulting crystal size is getting smaller with greater deposition voltage around 6.07 - 7.27 nm. The optical absorption results show that the CZTS absorber layer is sensitive at low wavelengths around 300 – 480 m,, with Light Harvesting Efficiency (LHE) ranging from 13.3 - 24.75%. The band gap energy values obtained ranged from 1.4 to 1.48 eV. The cell efficiency test results show an excellent efficiency value according to the reference ranges from 2.56-8.77%. These results indicate that the deposition voltage affects the characteristics of the CZTS absorbent layer for solar cell applications.
Hamed Nadimi, Hossein Sarpoolaky, Mansour Soltanieh,
Volume 20, Issue 4 (12-2023)
Abstract

In the present investigation, an attempt was made to evaluate the dissolution behavior of Ti in molten KCl-LiCl. The X-ray diffraction (XRD) pattern of heated Ti plate at 800 oC for 4 h without carbon black in molten salt revealed that TiCl3 formation was feasible. For more assurance, Ti plate was heated at 950 oC for 4 h in the presence of carbon black to identify synthesized TiC. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images from precursors and the final product showed that nano-crystalline TiC formation from coarse Ti particles was almost impossible without Ti dissolution. Thermodynamics calculations using Factsage software proved that it was possible to form various TiClx compounds. The TiC formation mechanism can be discussed in two possible ways: a reaction between Ti ion and carbon black for synthesizing TiC (direct) and a reaction between TiCl4 and carbon black led to indirect TiC synthesis. Elemental mapping using energy dispersive X-ray spectroscope (EDS) indicated that up to 815 oC, chlorine existed in the map. 

Yugen Kulkarni, Niketa Pawar, Namrata Erandole, Muskan Mulani, Mujjamil Shikalgar, Swapnil Banne, Dipali Potdar, Ravindra Mane, Smita Mahajan, Prashant Chikode,
Volume 21, Issue 1 (3-2024)
Abstract

The paper investigates the solar photodegradation of Methylene Blue dye using copper oxide (CuO) thin films synthesized by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The structural, morphological, and optical characteristics of the CuO thin films have been investigated by employing a variety of methods, such as Fourier transform Infrared (FTIR) spectroscopy, UV-Vis spectroscopy, Scanning electron microscopy (SEM), and X-ray diffraction (XRD). The outcomes showed that CuO thin films with excellent surface shape and a highly crystalline nature had been successfully deposited. Methylene Blue was subjected to solar radiation during its photodegradation process, and the outcomes showed a significant decrease in the dye's concentration over time. To maximize the photo degradation process, the effects of other experimental factors were also assessed, such as the starting concentration of MB, the quantity of CuO thin film, number of SILAR cycles and the pH of the solution. Good photocatalytic activity is demonstrated by CuO thin films produced using the SILAR approach in the solar photodegradation of methylene blue. The development of affordable and ecologically friendly wastewater treatment technology that can use sun energy to break down persistent organic contaminants is affected by these findings.
 
Sandesh Jirage, Kishor Gaikwad, Prakash Chavan, Sadashiv Kamble,
Volume 21, Issue 1 (3-2024)
Abstract

The Cu2ZnSnS4 (CZTS) thin film is newly emerging semiconductor material in thin film solar cell industry. The CZTS composed of economical, common earth abundant elements. It has advantageous properties like high absorption coefficient and best band gap. Here we have applied low cost chemical bath deposition technique for synthesis of CZTS at low temperature, acidic medium and it’s characterization. The films were characterized by different techaniques like X-Ray diffraction, Raman, SEM, Optical absorbance, electrical conductivity and PEC study. The X-Ray diffraction, Raman scattering techniques utilized for structural study. The XRD revels kasterite phase and nanocrystalline nature of CZTS thin films. These results and its purity confirmed further by advanced Raman spectroscopy with 335 cm-1 major peak. The crystallite size which was found to be 50.19 nm. The optical absorbance study carried by use of UV-Visible spectroscopy analyses its band gap near about 1.5 eV and its direct type of absorption. The electrical conductivity technique gives p-type of conductivity. The scanning electron microscopy (SEM) study finds it’s rock like unique morphology. The EDS technique confirms its elemental composition and it’s fair stoichiometry. The analysis of PEC data revealed power conversion efficiency-PCE to 0.90%.
The Cu2ZnSnS4 (CZTS) thin film is newly emerging semiconductor material in thin film solar cell industry. The CZTS composed of economical, common earth abundant elements. It has advantageous properties like high absorption coefficient and best band gap. Here we have applied low cost chemical bath deposition technique for synthesis of CZTS at low temperature, acidic medium and it’s characterization. The films were characterized by different techaniques like X-Ray diffraction, Raman, SEM, Optical absorbance, electrical conductivity and PEC study. The X-Ray diffraction, Raman scattering techniques utilized for structural study. The XRD revels kasterite phase and nanocrystalline nature of CZTS thin films. These results and its purity confirmed further by advanced Raman spectroscopy with 335 cm-1 major peak. The crystallite size which was found to be 50.19 nm. The optical absorbance study carried by use of UV-Visible spectroscopy analyses its band gap near about 1.5 eV and its direct type of absorption. The electrical conductivity technique gives p-type of conductivity. The scanning electron microscopy (SEM) study finds it’s rock like unique morphology. The EDS technique confirms its elemental composition and it’s fair stoichiometry. The analysis of PEC data revealed power conversion efficiency-PCE to 0.90%.

Amit Bandekar, Pravin Tirmali, Paresh Gaikar, Shriniwas Kulkarni, Nana Pradhan,
Volume 21, Issue 1 (3-2024)
Abstract

The Mn-Zn ferrite with a composition of Mn0.25Mg0.08Cu0.25Zn0.42Fe2O4 has been synthesized in this study using the chemical sol-gel technique at a pH of 7. The sample was prepared and subsequently annealed at a temperature of 700°C. The nanocrystalline ferrite samples were subjected to characterization using X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Thermogravimetry (TG), and Differential thermal analysis (DTA). The findings of these observations are delineated and deliberated. The sample's phase composition was verified using X-ray diffraction examination. The crystalline size was determined using Scherrer's formula and was observed to be within the range of 20-75 nm. Two notable stretching bands were seen in the FTIR spectra within the range of 400-650 cm-1. The spinel structure of the produced nanoparticles was confirmed by these two bands. The magnetic characteristics of the powder were examined using a Vibrating Sample Magnetometer (VSM). The presence of M-H hysteresis loops suggests that the produced nanoparticles have superparamagnetic properties, as evidenced by their low coercive force, remanent magnetization, and saturation magnetization values.
 
Muhammad Shahzad Sadiq, Muhammad Imran, Abdur Rafai, Muhammad Rizwan,
Volume 21, Issue 2 (6-2024)
Abstract

With increasing energy demand and depletion of fossil fuel resources, it is pertinent to explore the renewable and eco-friendly energy resource to meet global energy demand. Recently, perovskite solar cells (PSCs) have emerged as plausible candidates in the field of photovoltaics and considered as potential contender of silicon solar cells in the photovoltaic market owing to their superior optoelectronic properties, low-cost and high absorption coefficients. Despite intensive research, PSCs still suffer from efficiency, stability, and reproducibility issues. To address the concern, the charge transport material (CTM) particularly the electron transport materials (ETM) can play significant role in the development of efficient and stable perovskite devices. In the proposed research, we synthesized GO-Ag-TiO2 ternary nanocomposite by facile hydrothermal approach as a potential electron transport layer (ETL) in a regular planar configuration-based PSC. The as synthesized sample was examined for morphological, structural, and optical properties using XRD, and UV-Vis spectroscopic techniques. XRD analysis confirmed the high crystallinity of prepared sample with no peak of impurity. The optimized GO-Ag-TiO2 ETL exhibited superior PCE of 8.72% with Jsc of 14.98 mA.cm-2 ,Voc of 0.99 V, and a fill factor of 58.83%. Furthermore, the efficiency enhancement in comparison with reference device is observed which confirms the potential role of doped materials in enhancing photovoltaic performance by facilitating efficient charge transport and reduced recombination. Our research suggests a facile route to synthesize a low-cost ETM beneficial for the commercialization of future perovskite devices.
 
Fathi Brioua, Chouaib Daoudi,
Volume 21, Issue 2 (6-2024)
Abstract

We have modeled theoretical incident photon-to-current electricity (IPCE) action spectra of poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester active layer bulk-heterojunction. By the two-dimensional optical model of a multilayer system based on the structure of Glass substrate / SiO2 /ITO/ PEDOT: PSS /P3HT: PCBM(1:1)/Ca/Al, the optical responses of the device have been computed for different photoactive layer and Ca layer thicknesses to found an optimal structure which allows obtaining the maximum absorption localized in the active layer and high device performance. The electric field intensity, energy dissipation, generation rate, and IPCE have been computed to enhance the device's performance. The finite element method executes the simulation under an incident intensity of 100 mW/cm2 of the 1.5 AM illumination. It was found that the optimum structure is achieved by a 180 nm photoactive layer and 5 nm Ca layer thicknesses.


Rakhesh V, Sreedev P, Ananthakrishnan A,
Volume 21, Issue 2 (6-2024)
Abstract

Organic and Perovskite solar cells have attracted a lot of attention recently since they can be used with flexible substrates and have lower manufacturing costs. The configuration and materials employed in their construction, including the Electron Transport Layer (ETL), active layer, electrode contact, and hole transport layer greatly influence the stability and performance of these solar cells. This research focuses on the simulation of solar cells, specifically utilizing zinc oxide (ZnO) as the electron transport layer. A 0.1 molar ZnO thin film was prepared from Zinc acetate salt and was deposited on a glass substrate using the cost effective Successive Ionic Layer Adsorption and Reaction (SILAR) method. In-depth investigations were carried out on several factors, including structural, surface, optical and numerical analysis. The obtained parameters were utilized in the General-Purpose Photovoltaic Device Model (GPVDM) software to perform numerical simulations of the organic solar cell and Perovskite solar cell. Both Organic solar cells and Perovskite solar cells were designed numerically and through careful observations, electrical parameters like Open circuit Voltage (Voc), Short circuit current (Jsc), Fill Factor (FF), and Power Conversion Efficiency (PCE) were identified. The studies indicate the promising performance of simulated solar cells with SILAR-synthesized ZnO thin film as the ETL.
 
Amir Hojjati Lemraski, Ali Sedaghat Ahangari Hossein Zadeh, Rahim Naghizadeh, Hudsa Majidian,
Volume 21, Issue 4 (12-2024)
Abstract

Cordierite ceramics are of interest for various applications due to their properties such as low thermal expansion coefficient and high thermal shock resistance. However, due to the narrow range of sintering temperature, attempts have been made to synthesize it using different additives. In this way, titania and tialite have been added in different amounts to the initial raw material mixture (talc, kaolin, and synthetic alumina). In this research, the initial powders (talc, kaolin, and synthetic alumina) were mixed in a planetary ball mill using different amounts of TiO2 and tialite. The mixtures were sintered at 1250, 1300, and 1350 °C for 3 h. X-ray diffractometry and fluorescence, thermal analysis, microstructural observation, density, and cold compressive strength (CCS) were used to evaluate the sintered samples. Phase analysis revealed the presence of the cordierite phase along with small amounts of spinel. With increasing sintering temperature and titania addition, the amount of spinel decreased and the amount of cordierite phase increased. The real density increased with increasing titania additive content, but at higher titania contents, microcracks were observed in the SEM micrographs. By adding 15 wt% of tialite to the initial batch, the compressive strength has been increased by 88% compared to the pure cordierite sample.
Raghad Hadi, Furqan Almyahi,
Volume 21, Issue 4 (12-2024)
Abstract

In this investigation, a formulation was developed as a solution and thin films by combining poly (3-hexylthiophene) (P3HT) and fullerene Indene-C60 multi-adducts (ICxA) with varying solvent ratios. The formulations were prepared under ambient conditions. Morphological parameters were assessed utilizing a transmission electron microscope, scanning electron microscope  and complemented by optical microscope pictures. UV-Visible absorbance and photoluminescence (PL) measurements were implemented to investigate the optical properties of active layers The values of the energy gaps of the prepared thin films and solutions increased as the solvent ratios of chlorobenzene to stander solvent increased, as a result of the isolation of P3HT chains from their neighbours. The Raman spectra are associated with high aggregation of composition and increased conformation when the intensity ratio (IC= C/IC-C) is small and the full width at high maximum (FWHM) is low. In ambient conditions, organic photovoltaic cells (OPVs) are produced with varying solvent ratios. The device with a 30% ratio exhibited the highest performance, with a power conversion efficiency (PCE) of approximately 1%, an open circuit voltage (VOC) of 0.571 V, a short circuit current density (JSC) of 7.47 mA.cm-2, and a fill factor (FF) of 38.6%.

Page 4 from 4     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb