Showing 664 results for Type of Study: Research Paper
Nojehdehyan H., Moztar Zadeh F., Mir Zadeh Hamid, Hesaraki S., Keyanpour-Rad M.,
Volume 2, Issue 2 (6-2005)
Abstract
The effect of addition of NaHF2 on the cement setting and the set mass has been studied as an initial step to determine how fluoride influences the characteristics of a calcium phosphate cement, consisting of tetracalcium phosphate [TTCP:Ca4 (PO4)2O] and dicalcium phosphate dihydrate [DCPD:CaHPO4.2H2O].NaHF2 [0-10% wt% of powder phase] has been dissolved in double distilled water and used as the liquid phase of the apatite cement (AC). Powder X-ray diffraction analysis and FTIR measurements revealed that fluoride was necessary in promoting the formation of the apatite phase. The setting time was decreased significantly by the addition of NaHF2from 0% to 6%, but increased resulted in the AC (8-10%). The set AC (2%) has the highest compressive strength and the lowest porosity.The dissolution rate of set AC in weak acid, pH 5.5, was decreased with the amount of added NaHF2 from 0% to 6% but increased in the set AC 8-10%.The formation of fluoroapatite in AC (6%) was provided the low solubility and good acid resistance which is necessary for dental application.SEM observation showed needle-like apatite crystal growth over particulate matrix surface, however the amount of non-reactive TTCP or DCPD particles decreased by the addition of NaHF2. The Ca/P ratio, which was determined by EDAX, increased significantly with the addition of NaHF2.
Chandler H.w.,
Volume 2, Issue 2 (6-2005)
Abstract
Being brittle and having low thermal conductivity, refractories suffer damage and sometimes fail in service as a result of thermal shock. While the approach of those making fine-grained technical ceramics is to make their products sufficiently strong to withstand thermal stresses the refractory technologist is more cunning. He uses, often little known, devices to provide resistance to thermal shock that minimise but do not eliminate damage to the component. In this paper the basic equations of thermal conduction and elasticity are presented and followed by some immediate results that should guide the designer of components subject to severe thermal environments. The influence of size and shape of the refractory components is then discussed along with ways in which refractory producers can engineer the thermal and mechanical properties. In particular, the methods used to tailor fracture behavior to optimize the thermal shock resistance are treated in some detail.
Razaghian A., Yu D., Chandra T.,
Volume 2, Issue 3 (9-2005)
Abstract
Fracture behavior of a 7075 aluminium alloy reinforced with 15 Vol%. SiC particles was studied after T6 and annealing heat treatments under uniaxial tensile loading at room temperature. The scanning electron microscopy of fractured surfaces and EDS analysis showed:, that fracture mechanism changed from due mainly to fractured particle in T6 condition to interface decohesion in samples in annealed state. Different fracture mechanisms in annealed and T6 conditions can be ascribed mainly to the significant difference in the stress concentration levels around the particles. In T6 condition, very high local stress sufficient to cause fracture of particle can be generated during loading, while the presence of large precipitates at the particle/matrix interface produced interface decohesion leading to final fracture in the annealed state.
Fatemi-Varzaneh S.m., Zarei-Hanzaki A.,
Volume 2, Issue 3 (9-2005)
Abstract
AZ31 magnesium alloy is considered as a promising alloy in various applications and industries. Furthermore, to design a proper hot working process (rolling, forging and extrusion), the assessment of hot working behaviour of the alloy is necessary. Accordingly, the hot deformation behaviour of AZ31 alloy was studied through hot compression testing method This was carried out in a wide range of temperature (523K to 783K) and strain rates. The obtained true stress-true strain curves and final microstructures were examined and a partial melting was realized at 740K. It was concluded that the presence of liquid did change the deformation mechanisms thereby affecting the flow behaviour.
Mirbagheri S.m.h., Chirazi A.,
Volume 2, Issue 3 (9-2005)
Abstract
A numerical model has been developed for the determination of liquid flow permeability through columnar dendrite during growth. The model is inclusive two stages, first numerical evolution of the dendrite shape during growth, and second numerical determination of the interdendritic liquid permeability. Simulation results shown which solute concentration by evolution of dendrite shape could result to reduction of the permeability during solidification time. Comparison between the experimental data from other authors and the present numerical model data, for the low and high solid fractions, has shown a good agreement rather than current numerical models. Therefore present permeability model, in this investigation, could be used for all of the micro solidification codes by coupling on the segregation and the Fick's equations in domain of the inter-dendritic liquid for mushy alloys.
Sedghi A., Shokouh Far A., Eslami Farsani R.,
Volume 2, Issue 3 (9-2005)
Abstract
Carbon fibers are fabricated from different materials such as special polyacrylonitrile (PAN) fibers, cellulose fibers and pitch. But PAN fibers are recognized as the most widely used precursor for the present-day manufacture of carbon fibers. The process of fabrication carbon fibers from special PAN fibers is composed of two steps including oxidative stabilization at low temperature and carbonization at high temperatures in an inert atmosphere. Today carbon fibers are still expensive because of the high price of their raw material (special PAN fibers).This study focuses on making carbon fibers from commercial PAN fibers (low price PAN fibers used in textile industry). The results shows that in case of conducting complete stabilization process, it is possible to produce desirable carbon fibers from commercial PAN fibers. With some changes in conventional procedure of stabilization in terms of temperature and time of operation, the desirable conditions of complete stabilization are achieved.
Moayed M.h.,
Volume 2, Issue 3 (9-2005)
Abstract
In this research pitting Corrosion of a sensitized 316 stainless steel was investigated employing potentiodynamic, potentiostatic techniques. Sensitization process was carried out on as-received alloy by submitting the specimen in electric furnace set at 650°Cfor five hours and then the specimen was quenched 25°C water. Potentiodynamic polarization of as received and sensitized specimens in 1M H2SO4 solution at room temperature and 70°C clearly revealed that the sensitization process has caused a magnificent change on electrochemical behavior of the specimen by changing critical current density for passivation, passivation potential and passive current density. Optical microscopy examination of the specimen surface after oxalic acid electrochemical etching also showed the deterioration of grain boundary of sensitized specimen due to chromium carbide precipitation in compared to as-received one. Several anodic potentiodynamic polarization on rode shaped working electrodes prepared from as-received and sensitized specimen in 3.5% NaCl test solution proved an average ~220 mV drop in pitting potential due to sensitization. Anodic potentiostatic polarization at 400 and 200 mV above corrosion potential also demonstrate the deterioration of pitting resistance of alloy as a result of sensitization. Scanning electron microscopy examination of anodically polarized of sensitized specimen at 700mVprior and after oxalic acid etching revealed large stable pits with lacy cover and also openpits with deep crevice for etched specimens.
Estili M., Paydar M.h., Bahrololoom M.e.,
Volume 2, Issue 3 (9-2005)
Abstract
Dispersion and rheological behaviors of ionically stabilized aqueous alpha alumina suspensions were investigated in various pH values (3, 11) and solid volume fractions (4, 7, 10, 15) Vol% using sedimentation experiment as well as viscosity measurement. Interface separating porous-packed sediment from a relatively clear supernatant at pH 11 was measured over 20 hours with the aim of obtaining linearity range, initial settling velocity, final sediment height and suspension sensitivity factor, whilst it failed to be observed in the case of pH 3 for its turbid supernatant. Thus, the final sediment level instead of interface location was taken into consideration. For all solids loading, final sediment level in the case of pH 3 was smaller than those in pH 11. The interface was observed to be moving downward in a linear fashion, with the steady drive toward an equilibrium state, which was substantiated to be pH and solid loading dependent. As ? increased, linearity time changed in an ascending order. pH 11 suspensions showed good agreement with the well-known Richardson-Zaki equation and displayed dramatic variations in initial settling velocity, whilst it was not the case for pH 3 as understood generally by turbidity observations. In addition, pH and ? appeared to be more effective in giving stability to the suspending systems. On the other hand, rheological behaviors of these suspensions were taken into consideration for better indication of suspension stabilization degree in which suspension yield stress derived using viscosity values was focused. The results showed that ?y at pH 3 is much lower than that of at pH 11. This is a further indication of better dispersion at pH 3. It was also found that for all ? values, pH 3 suspensions were more stable than the flocculated pH 11 ones.
Zhang S.,
Volume 2, Issue 3 (9-2005)
Abstract
Hydration behavior and antioxidising effect of aluminium (AI) powder has been investigated. Bayerite Al (OH) 3 product layers formed on Al in pure water at 25-45°C were porous, so the hydration rate, although very slow at 25°C, increased rapidly with increasing temperature from 25 to 45°C. On further increasing temperature from 45 to 95°C, initial hydration rate increased, but changed little over long hydration periods due to formation of denser and more continuous product layers. At 100?C, due to rapid water-evaporation, hydration product layers (composed of Al (OH)3 and a small amount of boehmite AlO (OH) became detached from the Al surfaces, so offering less protection, so that the hydration rate of Al increased markedly. The presence of MgO or calcium aluminate cement (CAC) in water did not change the hydration product, but greatly accelerate the hydration rate of AI. Addition of even a small amount (e.g. 0.25 wt% of Al amount) of MgO or CAC to water accelerated significantly the hydration of Al, and with increasing level of MgO or CAC, the hydration extent increased markedly. Sol-gel Si02 coatings on Al were useful in improving the hydration resistance of Al, and did not have a negative effect on the behavior of Al as an antioxidant.
Homayonifar P., Saboohi Y., Firouz Abadi B.,
Volume 2, Issue 4 (12-2005)
Abstract
Iron and steel is an energy intensive industry and its contribution to the pollution of environment is considerable. Direct reduction iron (DRI) is a major element of an iron and steel production plant. Its share in natural gas and electricity consumption of total plant is estimated to be 70% and 15% respectively. Reduction gases are produced in natural gas reforming unit and its elements are CO and H2. A major consequence of using this technology is high level of CO2 emission, which pollutes the environment. An alternative to the existing technology is utilization of H2 as reducing agent. A comparison of various hydrogen production processes indicate that thermal decomposition of methane provides an attractive option from economical and technical point of view. Therefore, a system for producing hydrogen, based on thermal decomposition technique, has been designed in the framework of the present paper.
Arabi H., Seyedein S.h., Satari M., Tabatabaie N.,
Volume 2, Issue 4 (12-2005)
Abstract
Life assessment on the base of grain boundary creep cavitation of 1%Cr - 0.5%Mo low alloy steel has been discussed in this paper. Since microstructural degradation is one of the most important mechanisms that affects creep life, it is necessary to assess microstructural damage in order to estimate the life. Microstructural damage within the grain boundaries is a continuous phenomena starting from about the beginning of secondary stage of creep process. In this research, the amounts of damage accumulation in the form of grain boundary cavitations for various creep times up to the ends of secondary creep stage for each creep condition was found by using quantitative metallography technique, i.e. image analyser. Then from the data obtained for grain boundary area cavitated and number of cavities per unit area, which was about linear as a function of time for each of creep conditions, the amount of damage in the tertiary stage was estimated for various times. Then a creep damage parameter was proposed for the creep process. Finally, having this damage parameter (?) and using continuum damage mechanics (CDM), a new version of Rabotnov-Kachanov equation for tertiary creep rate was established.
Saremi M., Nouri Delavar A., Kazemi M.,
Volume 2, Issue 4 (12-2005)
Abstract
An investigation of the electrochemical noise generation during Stress Corrosion Cracking (SCC) of 70-30 Brass in Mattson's solution was conducted. The fluctuations of potential and current were monitored. The relationship between potential and current fluctuations has been evaluated in time domain and the obtained data has been analyzed in the frequency domain using Power Spectral Density (PSD). It is shown that 70-30 Brass has characteristic noise behavior during SCC that is step-by-step change in current and potential up to the final stage of fracture, and this may be used for SCC monitoring.
Salahi E., Ebadzadeh T., Moztar Zadeh F., Solati Hashjin M.,
Volume 2, Issue 4 (12-2005)
Abstract
Compositions of Al2O3+Si, SiO2+Al and Al+Si systems were prepared to study the effect of reaction bonding process on the mullite formation. The composition of each system was adopted according to mullite stoichiometery and sintered in 700-1600°C range. Results showed that the formation of reaction bonded mullite starting from Al2O3+Si mixtures, proceeded in two partially overlapping steps, the oxidation of Si to SiO2, and the reaction of SiO2 and Al2O3 to form mullite. In this system, up to 1400°C, conversion of Si to SiO2 was taken place and cristobalite formed, but mullite formation was not observed. Mullite phase started to form at 1450°C. Results indicated that complete reaction was not occurred up to 1600°C and 2 hours soaking time. XRD patterns of samples in Al+ SiO2 system showed that the reaction through sequences: (a) reduction of SiO2 by Al, (b) formation of a- Al2O3 and SiO2-rderived Si oxidation, and (c) mullite formation. X-ray diffraction patterns of heat-treated Al+Si system showed that reaction between Al and oxygen at 900°C was occurred with the reaction product being a- Al2O3 Oxidation of Si and formation of mullite were not detected in this system. SEM micrographs showed that both Al2O3+Si and SiO2+Al systems have similar microstructures, which consisted of a- Al2O3, mullite and free Si. The microstructures of the samples in Al+Si system consisted of a- Al2O3 free Al and Si with intermetallic Al-Si compound.
Nouroozi S., Vardelle A.,
Volume 2, Issue 4 (12-2005)
Abstract
In wire arc spraying, the atomizing air pressure and applied nozzle system are important factors influencing particles characteristics and coating quality. The aim of this paper is to study how the characteristics of particles such as size, velocity and temperature are influenced by the operating conditions in wire arc spray. For that, three types of wires are tested: solid wire of stainless steel 316L, cored wires 97MXC and 98MXC. Arc spray gun is an Arc Jet 9000 manufactured by TAFA. For each condition, the particles temperature and particles velocity are measured using an imaging CCD camera, Spray Watch (Oseir Ltd). Particles size distributions are determined with a laser grain meter. The morphology and composition of particles were evaluated with SEM, EDX and X-Ray diffraction. Results induce important modifications in the particles size distributions and particles velocity. A small diameter nozzle and high atomizing air pressure resulted in a reduction in particles size distributions and an increase in particles velocity.
Sheikhi Moghaddam K., Ataie A.,
Volume 2, Issue 4 (12-2005)
Abstract
Ultra-fine particles of barium hexaferrite have been synthesized by co-precipitation method using barium nitride and iron chloride precursors with a Fe/Ba molar ratio of 11. Co-precipitation was carried out at 25 and 80°C using NaOH as a precipitant. Effect of coprecipitation and annealing temperatures on the phase composition and morphology of the products have been investigated using XRD and SEM, respectively. XRD results indicated existence of BaFeO3-x as a major phase in co-precipitated samples. Analysis of the XRD results also revealed that barium hexaferrite starts to form at a relatively low temperature of 700°C for sample synthesized at 80°C. SEM micrographs exhibit plate-like hexagonal particles of barium hexaferrite for calcined samples. The SEM results showed that the mean particle size of co-precipitated sample at 25°C is smaller than that of 80°C after calcining.
Hadian A.m., Abu Fanas S.h.,
Volume 2, Issue 4 (12-2005)
Abstract
Enhancing the properties of dental resin composites is of interest to researchers. The objective of the present investigation was to improve the strength and fracture toughness of dental composites via addition of silicon carbide whiskers and substitution of commonly used filler materials with stabilized zirconia ceramic powder. It was also intended to study the effect of powder- to- whisker ratio on mechanical properties of the resultant composites. The flexural strength and fracture toughness of composite samples with different whiskers loadings were measured. It was found that addition of whiskers to the composites enhances the mechanical properties of the composites. The strength and fracture toughness increased by increasing the amount of whiskers. The flexural strength of a composite having 60wt% whisker and 10wt% zirconia powder was about 210 MPa while that of the composite having only 60wt% ceramic powder was about 110 MPa. The microstructural examinations revealed that reinforcing mechanism was whiskers pull-out as well as crack deflection.
Moore R.e., Karakus M.,
Volume 2, Issue 4 (12-2005)
Abstract
In situ refractories are defined as brick or unshaped products, which react internally or with furnace atmospheres and/or slag components so as to be enhanced in their performance. Examples of such products are discussed with emphasis on those that are currently employed and are being developed for the melting of iron and steel. Some strategies for the development of future in situ products are outlined.
Baradari H., Amani Hamedani H., Karimi Khoygani S., Rezaei H.r., Javadpour J., Sar Poulaki H.,
Volume 3, Issue 1 (6-2006)
Abstract
Ultrafine hydroxyapatite (HAp) powders with crystallite size in the range of 10-90 nm were synthesized by chemical precipitation process using Ca(OH)2 and H3PO4 solutions as starting materials. Molar ratio of Ca/P=1.68 was kept constant throughout the process and alkaline condition for the reaction was maintained using ammonium hydroxide. The role of raw material concentration on HAp crystallite size and morphology were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The results revealed that variations in crystallite size and morphology of synthesized HAp are strongly affected by the concentration of acid solution. To study the sintering behavior of HAp particles, the powders were pressed at 200 MPa using a uniaxial press. Sintering experiments were carried out at temperatures of 1100, 1250 and 1300°C with various soaking times at maximum temperatures. XRD was also used in determining thephases present after sintering process. The results indicated the decomposition of HAp into a-tricalcium phosphate (TCP) and b-TCP phases at 1300°C. The microstructure of the sintered HAp ceramics was characterized by SEM.
Alaee M.s.,
Volume 3, Issue 1 (6-2006)
Abstract
plasma-sprayed silicon layers have been used to produce silicon nitride layers with fibrous microstructure which optimizes fracture toughness and strength. SEM examination of the specimens shows that the surface is covered by fine needles and whiskers of Si3N4.In order to study the oxygen contamination effect as well as other contaminants introduced during spraying and nitridation processes, surface sensitive analysis techniques like AES and XPS have been used to determine concentration of these contaminants.
Hosseini Sh., Arabi H., Tamizifar M., Zeyaei A.a.,
Volume 3, Issue 1 (6-2006)
Abstract
In this research, rotating bending fatigue test at minimum to maximum stress ratio of R=-1 was used for investigating the fatigue behavior of Ti-6Al-4V alloy. Both smooth and notched specimens, with elastic concentration factor, kt, of approximately 3.6 and 4.1 were used for this purpose.In addition, the effect of variation in ultimate tensile strength, UTS, on the fatigue behavior of this alloy was studied. S-N curves were drawn and the value of notch sensitivity was obtained or each case.The results showed that the presence of notch in Ti-6Al-4V alloy has a different amount of sensitivity when the notched specimens were subjected to high cycle fatigue (HCF) and low cycle fatigue (LCF) tests. However, the notch sensitivity of this alloy was shown generally to be much lower than steel alloys with similar UTS values. Thus, considering the high compatibility of this alloy with the body environment and its low sensitivity to notch, one can strongly recommend this alloy for use in biomedical application.