Showing 26 results for Nanoparticle
Simin Janitabar-Darzi, Alireza Mahjoub,
Volume 9, Issue 3 (9-2012)
Abstract
Yellow-colored nitrogen doped TiO2 photocatalyst and a pure TiO2 powder were synthesized via sol-gel method using TiCl4 and urea as raw materials. However, the synthesis procedure for nitrogen doped TiO2 was catalyzed by acid that dialed with controlled precipitation and slow nucleation. According to XRD analysis, the nitrogen doped TiO2 consisted of anatase phase of titania which was a significant achievement regarding its possible photocatalytic applications. The band gaps of nitrogen doped TiO2 and pure TiO2 were estimated from UV-Vis spectroscopy data to be 2.8 and 3.3 ev, respectively. Photocatalytic properties of the nitrogen doped TiO2 nanocatalyst and pure TiO2 were compared for degradation of crystal violet dye in visible light irradiation. In comparison to pure TiO2, nitrogen doped TiO2 showed superior photocatalytic efficiency towards the dye.
N. Bahremandi Tolou, M. H. Fathi, A. Monshi, V. S. Mortazavi,f. Shirani, M. Mohammadi,
Volume 10, Issue 2 (6-2013)
Abstract
Abstract:In recent years, there have been many attempts to improve the properties of dental amalgam. The aim of the present investigation was fabrication and characterization of dental amalgams containing TiO2 nanoparticles and evaluation of their compressive strength, antibacterial and corrosion behavior. In this experimental research, TiO2 nanoparticles (TiO2 NPs) were added to reference amalgam alloy powder and then, dental amalgam was prepared. In order to investigate the effect of TiO2 NPs on properties of dental amalgam, 0, 0.5, 1, 2 and 3 wt. % of TiO2 NPs were added to amalgam alloy powder and the prepared composite powder was triturated by a given percent of mercury. Xray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS) techniques were used to characterize the prepared specimens. Potentiodynamic polarization corrosion tests were performed in the Normal Saline (0.9 wt. % NaCl) Solutions as electrolytes at 37°C. The results showed that the corrosion behavior of the dental amalgam with 0.5 or 1 wt. % TiO2 NPs is similar to the corrosion behavior of the reference amalgam, while with increasing the weight percent of TiO2 NPs, the corrosion rate increases. Also, the results of this investigation indicated that adding TiO2 NPs in amounts of up to 1 wt. % to amalgam alloy powder improve compressive strength of dental amalgam and has no destructive influence on its corrosion behavior. As well as, according to antibacterial results, TiO2 NPs can increase the biocompatibility and antibacterial activity of dental amalgam. The results of present study suggest that amalgam/ TiO2 NPs nanocomposite with 1% of TiO2 NPs could be regarded as a biocompatible and bioactive dental material that provide better characters for dental applications.
M. Kadkhodaee, H. Daneshmanesh, B. Hashemi, J. Moradgholi,
Volume 11, Issue 1 (3-2014)
Abstract
Accumulative roll-bonding process (ARB) is an important severe plastic deformation technique for production of the ultrafine grained, nanostructured and nanocomposite materials in the form of plates and sheets. In the present work, this process used for manufacturing Al/SiO 2 nanocomposites by using Aluminum 1050 alloy sheets and nano sized SiO 2 particles, at ambient temperature. After 8 cycles of ARB process, the tribological properties and wear resistance of produced nanocomposites were investigated. The wear tests by abrasion were performed in a pinon-disc tribometer. Results show that by increasing ARB cycles and the amount of nano powders, the friction coefficient of produced nanocomposites decreases.
Z. Abadi, S. M. Bidoki, V. Mottaghitalab, A. Benvidi, A. Shams-Nateri,
Volume 11, Issue 3 (9-2014)
Abstract
Silver nanoparticles are being given considerable attention because of their interesting properties and
potential applications. One such exploitable use is as the major constituent of conductive inks and pastes used for
printing various electronic components. This paper presents a novel direct-writing process for fabrication of the first
deposited silver nanoparticles (AgNPs) (50-200nm) electrode via a thermal inkjet printer. In this method, AgNPs were
chemically deposited by ejection of ascorbic acid and silver nitrate solutions onto different substrates such as paper
and textile fabrics. Silver deposited patterns were used as electrodes in different electrochemical experiments and their
morphology was also investigated in SEM observations. The highest conductivity of deposited electrodes obtained on
paper as the substrate was found to be around 5.54x105 S/m. Inkjet fabricated electrodes exhibited acceptable
electrochemical behavior in experiments designed for measuring the concentration of hydrogen peroxide as a
fundamental procedure for early determination of glucose. This novel inkjet silver deposition technique is introduced
to be considered as a promising method for ultimate single step fabrication of different electrochemical bio-sensors.
H. Shalchian, A. Farbod, H. Beygi, S. A. Sajjadi,
Volume 12, Issue 1 (3-2015)
Abstract
High energetic aluminum nanoparticles are mainly used as additive in solid rocket propellants. However,
fabrication of these aluminized energetic materials is associated with decreasing the burning rate of propellants due
to problems such as oxidation and agglomeration of nanoparticles. In this study, to improve combustion performance
of aluminum nanoparticles, coating by metallic Ni shell was studied. Nickel coating of aluminum nanoparticles was
performed through electroless deposition (ED) subsequently, morphology and chemical composition of Ni-coated
nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM),
energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). These studies show that a uniform Ni layer with a
thickness of 10nm is coated on the surface of Al nanoparticles. Thermal analysis of uncoated and Ni-coated aluminum
nanoparticles was done using differential thermal analysis (DTA) and thermo gravimetric analysis (TGA). The results
of thermal analysis indicate that, coating the aluminum particles by Ni, leads to improvement in combustion
performance of aluminum nanoparticles through decreasing critical ignition temperature, ignition delay time of the
nanoparticles and promoting the ignition by exothermic chemical reactions between Al and Ni
M. S. Mahmoudi Jozee, S. Sanjabi, O. Mirzaee,
Volume 13, Issue 3 (9-2016)
Abstract
A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs) composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate. In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.
R. Hasanzadeh, T. Azdast, R. Eungkee Lee, A. Afsari Ghazi,
Volume 14, Issue 3 (9-2017)
Abstract
Material selection is a main purpose in design process and plays an important role in desired performance of the products for diverse engineering applications. In order to solve material selection problem, multi criteria decision making (MCDM) methods can be used as an applicable tool. Bumper beam is one of the most important components of bumper system in absorbing energy. Therefore, selecting the best material that has the highest degree of satisfaction is necessary. In the present study, six polymeric nanocomposite materials were injection molded and considered as material alternatives. Criteria weighting was carried out through analytical hierarchy process (AHP) and Entropy methods. Selecting the most appropriate material was applied using technique for order preference by similarity to ideal solution (TOPSIS) and the multi-objective optimization on the basis of ratio analysis (MOORA) methods respect to the considered criteria. Criteria weighting results illustrated that impact and tensile strengths are the most important criteria using AHP and Entropy methods, respectively. Results of ranking alternatives indicated that polycarbonate containing 0.5 wt% nano Al2O3 is the most appropriate material for automotive bumper beam due to its high impact and tensile strengths in addition to its low cost of raw material. Also, the sensitivity analysis was performed to verify the selection criteria and the results as well.
R. Ubaid, S. Saroj Kumar, S. Hemalatha,
Volume 15, Issue 3 (9-2018)
Abstract
Drug resistant pathogenic microbes have been causing serious health issues resulting in the substantial increase of death rates and morbidity paving the way for nanoparticles to be utilized as antimicrobial agents. This study was performed to evaluate the effectiveness of CuNPs on the growth of drug resistant clinical isolates of Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis. Minimum inhibitory concentration of CuNPs against Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis was found to be 1.25. 1.25 and 0.625 mg/ml and minimum bactericidal concentration against the same isolates was found to be 2.5, 2.5 and 5 mg/ml respectively. The ratio of MBC/MIC, referred to as tolerance level, was calculated for all the isolates which signifies the bactericidal or bacteriostatic effect of any antimicrobial agent. For Streptococcus pyogenes and Enterococcus faecium, the tolerance level was 2 while as for Enterococcus faecalis, it was 8. Antibiotic susceptibility results were calculated which showed that the isolates were resistant to Ampicillin (10 µg), Amoxycillin (30 µg) and Aztreonam (30 µg). Susceptibility results were followed by calculating multiple antibiotic resistance indices (MARI). MARI is an important tool which gives an idea about the bacterial resistance in a given population. For all the three isolates, MARI results were equivalent to 1 because of their resistance towards all the three antibiotics used. Antimicrobial activity through well-plate method was carried out and inhibitory effect of CuNPs on biofilm formation was evaluated.
A. Thakur, G. Reddy,
Volume 17, Issue 3 (9-2020)
Abstract
Mercury, one of the common pollutants in water, is known to affect human health adversely upon exposure. It is released in water not only by various natural processes but also by human activities. Methods developed so far for the detection of mercuric ions in water have limitations like sensitivity range, complex setup, skillful operation etc. Silver nanoparticles, due to unique properties, have been explored by researchers to develop better detection systems. Stable silver nanoparticles can be easily synthesized by methods of green chemistry, its reaction with mercuric ion can be easily observed by changes in color and UV-Vis spectra. The absorbance data from UV-Vis spectra can also be used in quantifying mercury concentration. In this paper, stable silver nanoparticles synthesized using silver nitrate as precursor, sodium lignosulphonate (LS) as reducing and stabilizing agent under microwave radiation are explored for detection of mercuric ions in water. Formation of AgNP was confirmed by UV-Vis band at 403.5nm. The intensity of this band showed a proportional decrease with increasing Hg+2 concentration. Hg+2 ions were detected by a distinct color change at higher concentration of Hg+2 also. The limit of detection (LOD) calculated from the observed absorbance data to be 0.7 ppm.
N. Akhlaghi, G. Najafpour, M. Mohammadi,
Volume 17, Issue 4 (12-2020)
Abstract
Modification of MnFe2O4@SiO2 core-shell nanoparticles with (3-aminopropyl) triethoxysilane (APTES) was investigated. The magnetite MnFe2O4 nanoparticles with an average size of ~33 nm were synthesized through a simple co-precipitation method followed by coating with silica shell using tetraethoxysilane (TEOS); that has resulted in a high density of hydroxyl groups loaded on nanoparticles. The prepared MnFe2O4@SiO2 nanoparticles were further functionalized with APTES via silanization reaction. For having suitable surface coverage of APTES, controlled hydrodynamic size of nanoparticles with a high density of amine groups on the outer surface, the APTES silanization reaction was investigated under different reaction temperatures and reaction times. Based on dynamic light scattering (DLS) and zeta potential results, the best conditions for the formation of APTES-functionalized MnFe2O4@SiO2 nanoparticles were defined at a reaction temperature of 70 °C and the reaction time of 90 min. The effectiveness of our surface modification was established by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). The prepared magnetite nanostructure can be utilized as precursors for synthesizing multilayered core-shell nanocomposite particles for numerous applications such as medical diagnostics, drug, and enzyme immobilization, as well as molecular and cell separation.
Mohammed Ruhul Amin Bhuiyan, Hayati Mamur,
Volume 18, Issue 3 (9-2021)
Abstract
Carbon-based chemical substances persistence can contribute to adverse health impacts on human lives. It is essential to overcome for treatment purposes. The semiconducting metal oxide is Zinc Oxide (ZnO), which has excellent biocompatibility, good chemical stability, selectivity, sensitivity, non-toxicity, and fast electron transfer characteristics. The ZnO nanoparticles are more efficient compared to other metal oxide materials. Thus, the nanoparticles are in the present research situation to receive increasing attention due to their potential performance of the human body to feel comfortable. The nanoparticles become more promising for biomedical applications through the development of anticancer agents to recovery different types of malignant cells in the human body. The ZnO nanoparticles can be the future potential materials for biomedical applications. The purpose of this paper is to review the cost-effective approach to synthesize the ZnO nanoparticles. Moreover, these ideas can develop for synthesized ZnO biomaterial to perform easily up-scaled in biomedical applications.
Tashi Tenzin, Amrinder Kaur,
Volume 19, Issue 2 (6-2022)
Abstract
Green synthesis refers to the synthesis of nanoparticles using plants and microorganisms. It is preferred over conventional methods as its sustainable, eco-friendly, cost effective and rapid method. The phytochemicals and enzymes present in plants and microorganisms respectively acts as the reducing and capping agent for the synthesis of nanoparticles. Phytochemicals and enzymes have the ability to reduce precursor metal ions into nanoparticles. As the conventional methods involve the use of high energy and toxic chemicals which are harmful to both environment and organisms, these synthesis methods are discouraged. Of the nanoparticles, gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have gained lots of attention owing to their multiple applications and less toxicity. In addition, various in-vitro studies have reported the antimicrobial activity of AgNPs and AuNPs against various microbes. This particular review portrays the methods of nanoparticles synthesis, components of green synthesis, mechanism of green synthesis, antimicrobial activity, other applications and various factors affecting the green synthesis of AgNPs and AuNPs.
Fiza Ur Rehman, Syeda Sohaila Naz, Muhammad Junaid Dar, Annum Malik, Maimoona Qindeel, Francesco Baino, Fazli Wahid, Abbas Rahdar, Saeeda Munir, Sara Qaisar, Kifayat Ullah Shah, Mahtab Razlansari,
Volume 19, Issue 2 (6-2022)
Abstract
Neoplastic cells have co-opted inflammatory receptors and signaling molecules that potentiate inflammation. Activated inflammatory pathways lead to neo-angiogenesis, lymph-angiogenesis, immunosuppression, tumor growth, proliferation and metastasis. This cancer-sustaining inflammation is a critical target to arrest cancer growth. Multiple drug resistance, high cost, low oral bioavailability and serious side effects have rendered conventional cytotoxic chemotherapeutics less impressive. The aim of this research was to achieve cancer debulking and proliferation prevention by limiting ‘cancer-sustaining’ tumor niche inflammation through non-conventional oral approach employing anti-inflammatory agents and avoiding conventional cytotoxic agents. Synergistic anti-inflammatory agents, i.e. celecoxib as selective COX-2 inhibitor and montelukast as cysteinyl leukotriene receptor antagonist, were selected. Silver nanoparticles (AgNPs) were used as nanocarriers because of their efficient synergistic anti-neoplastic effects and excellent oral drug delivery potential. Specifically, selected drugs were co-conjugated onto AgNPs. Synthesized nanoparticles were then surface-modified with poly(vinyl alcohol) to control particle size, avoid opsonization/preferred cellular uptake and improve dispersion. Surface plasmon resonance analysis, particle size analysis, DSC, TGA, XRD, FTIR and LIBS analysis confirmed the successful conjugation of drugs and efficient polymer coating with high loading efficiency. In-vitro, the nanoparticles manifested best and sustained release in moderately acidic (pH 4.5) milieu enabling passive tumor targeting potential. In-vivo, synthesized nanoparticles exhibited efficient dose-dependent anti-inflammatory activity reducing the dose up to 25-fold. The formulation also manifested hemo-compatibility, potent anti-denaturation activity and dose-dependent in-vitro and in-vivo anti-cancer potential against MCF-7 breast cancer and Hep-G2 liver cancer cell lines in both orthotopic and subcutaneous xenograft cancer models. The anti-inflammatory nanoparticles manifested tumor specific release potential exhibiting selective cytotoxicity at cancerous milieu with slightly acidic environment and activated inflammatory pathways. The formulation displayed impressive oral bioavailability, sustained release, negligible cytotoxicity against THLE-2 normal human hepatocytes, low toxicity (high LD50) and wide therapeutic window. Results suggest promise of developed nanomaterials as hemo-compatible, potent, cheaper, less-toxic oral anti-inflammatory and non-conventional anti-cancer agents.
Pooyan Soroori, Saeid Baghshahi, Arghavan Kazemi, Nastaran Riahi Noori, Saba Payrazm, Amirtaymour Aliabadizadeh,
Volume 19, Issue 3 (9-2022)
Abstract
The goal of the present study is to prepare a room temperature cured hydrophobic and self-cleaning nano-coating for power line insulators. As a result, the installed insulators operating in power lines can be coated without being removed from the circuit and without the need to cut off power. For this purpose, hydrophobic silica nanoparticles were synthesized by sol-gel method using TEOS and HMDS. The synthesized hydrophobic silica nanoparticles were characterized by XRD, FTIR, SEM, and TEM analyses to investigate phase formation, particle size, and morphology. Then the surface of the insulator was cleaned and sprayed by Ultimeg binder solution, an air-dried insulating coating, as the base coating. Then the hydrophobic nano-silica powder was sprayed on the binder coated surface and left to be air-cured at room temperature. After drying the coating, the contact angle was measured to be 149o. Pull-off test was used to check the adhesion strength of the hydrophobic coating to the base insulator. To evaluate the effect of environmental factors, UV resistance and fog-salt corrosion tests were conducted. The results showed that 150 hours of UV radiation, equivalent to 9 months of placing the samples in normal conditions, did not have any significant effect on reducing the hydrophobicity of the applied coatings.
Abdullah Alswata, Shaimaa Ali, Fares Alshorifi,
Volume 19, Issue 3 (9-2022)
Abstract
ABSTRACT
In this paper, novel Nanohybrid CuO-Fe3O4/Zeolite nanocomposites (HCFZ NCs) have been synthesized to improve the adsorption capacity and activity for removing the Arsenic and Lead cations from the contaminated water solutions. The nanohybrid 4, 10, and 20 -HCFZ NC samples were investigated by XRD, FT-IR, TEM, FESEM, EDX, and BET. The characterization results of these catalysts confirmed the presence of CuO and Fe3O4 NPs in nanospherical shapes as Nanohybrid Cu and Fe oxides on the zeolite surface. Notably, the 10-HCFZ NC sample showed the highest removal efficiency of harmful metallic pollutants from the water in comparison to the prepared neat zeolite, 4-HCFZ NC, and 20-HCFZ NC samples, with a percentage removal of (97.9 %) for Pb ions and (93.5 %) for As ions within 30 minutes (100 ppm). According to the adsorption isotherms results, R2 values for the Langmuir isotherm were the highest, suggesting that the experimental results fit better the Langmuir isotherm model. Generally, according to the obtained results, there is a possibility of enhancing the efficiency of Nanohybrid CuO-Fe3O4/Zeolite NCs to remove Arsenic and Lead ions from polluted aqueous solutions.
Hrishikesh Mahapatra, Sumit Bedia, Aishwarya Ramasubramanian, Mridula Joshi, Mahesh Ghadage, Aarti Bedia,
Volume 20, Issue 3 (9-2023)
Abstract
Graphene Nanoparticles (GNPs), an upshot of nanotechnology have attracted great interest in diverse research fields including dentistry for their unique properties. Graphene Nanoparticles are cytocompatible and when combined with other compounds, they possess improved synergistic antimicrobial and anti-adherence properties against oral pathogens. The cytotoxicity of graphene in the oral setting has been reported to be very limited in the scientific literature. Current applications of graphene include reinforcing Polymethylmethacrylate (PMMA) for the fabrication of dentures, improving properties of dental luting agents like glass ionomer cement, reinforcing restorative composites and ceramics, and improving osseointegration of titanium dental implants by coating with graphene. This paper reviews the nanoparticle ‘Graphene’ and its potential uses in the field of restorative dentistry.
Amruta Patil, Sonali Mahaparale,
Volume 21, Issue 1 (3-2024)
Abstract
Iron oxide nanoparticles has attracted extensively due to their supermagnetic properties, preferred in biomedicine because of their biocompatibility and potential nontoxicity to human beings. Synthesis of iron nanoparticles (FeNPs) was prepared with the help of ferric chloride and ferrous sulphate by using the coprecipitation method. The variation and combination of ferric and ferrous concentrations affect the physical and magnetic properties of iron oxide nanoparticles. The effect of 0.1 M ferric and ferrous concentration on iron oxide nanoparticles studied separately and in combination. The obtained nanoparticles were characterized by Particle size, zeta potential, Ultraviolet (UV-visible), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscope (SEM), Thermal gravimetric analysis (TGA), and Vibrating-sample magnetometer (VSM) techniques. Particle size was below 200nm and zeta potential was within the limit for all the batches. UV visible spectra at 224 nm, and FTIR exhibit two peaks at 510 and 594 cm-1, indicating iron oxide NPs and XRD confirmed the crystalline nature of Fe. SEM showed a spherical shape for all batches. The use of a combination of ferric and ferrous is more effective than its individual use. TGA and VSM studies confirmed its magnetic properties.
Richa Singh,
Volume 21, Issue 1 (3-2024)
Abstract
Drug-resistance among bacteria is a concerning issue in medical field. Silver nanoparticles (AgNPs) are one of the promising novel nano-antibiotics. In the present study, AgNPs were synthesized using cell-free extract of Acinetobacter sp. challenged with silver nitrate. Preliminary observations done using UV-Vis spectrophotometry at 420 nm. Complete reduction of silver ions to AgNPs was confirmed through cyclic voltammetry. Electron microscopy revealed formation of spherical shaped nanoparticles of size upto 20 nm. These AgNPs were furthr used to determine their effect on activity of various antibiotics against pathogenic bacteria such as Neisseria and Xanthomonas. Higher antibacterial activity of AgNPs was observed against Gram-negative bacteria. Enhanced antibacterial action of AgNPs was observed with selected beta-lactam antibiotics producing upto 3-fold increase in area of zone of inhibition. On exposure to AgNPs, the minimum inhibitory concentration and minimum bactericidal concentration of antibiotics were lowered by upto 2000 times indicating potential synergistic action of AgNPs. This study clearly signifies that the drug, proved to be inefficient due to bacterial resistance, could be made functional again in presence of AgNPs. This will help in development of novel antibacterial formulations containing antibiotics and nanoparticles to combat multiple drug-resistance in microorganisms.
Farah Zulkifli,
Volume 21, Issue 2 (6-2024)
Abstract
Researchers are increasingly focusing on green synthesis methods for silver nanoparticles due to their cost-effectiveness and reduced environmental impact. In this study, we utilized an edible bird's nest (EBN), a valuable economic resource, as the primary material for synthesizing silver nanoparticles using only water as the solvent. Metabolite profiling of the EBN extract was conducted using LC-QTOF-MS in positive mode (ESI+), revealing the presence of lipids, glycosides, peptides, polysaccharides, and disaccharides. Upon the addition of silver nitrate to the aqueous EBN extract, noticeable color changes from transparent to brown indicated the successful formation of AgNPs. Subsequent characterization of these silver nanoparticles involved UV-Visible spectroscopy, which revealed an absorption peak at 421 nm. Further characterization was carried out using FESEM, ATR-FTIR spectroscopy, and EDX analysis. The involvement of phenolic agents, proteins, and amino acids in reducing the silver particles was confirmed. The synthesized nanoparticles exhibited a spherical shape, and a particle size ranging from 10 to 20 nm. The presence of elemental silver was confirmed by a strong, intense peak around 3 keV in the EDX spectrum. To assess their potential, the antibacterial properties of the silver nanoparticles against Escherichia coli and Staphylococcus aureus were evaluated using the agar diffusion method.
Muddukrishnaiah Kotakonda, Sajisha V.s, Aiswarya G, Safeela Nasrin Pakkiyan, Najamol A Alungal, Mayoora Kiliyankandi K, Divya Thekke Kareth, Naheeda Ashraf Verali Parambil, Saranya Sasi Mohan, Renjini Anil Sheeba, Sarika Puthiya Veettil, Dhanish Joseph, Nishad Kakkattummal, Afsal Bin Haleem Mp, Safeera Mayyeri, Thasneem Chemban Koyilott, Nasiya Nalakath, Samuel Thavamani B, Famila Rani J, Aruna Periyasamy, Chellappa V Rajesh, Rameswari Shanmugam, Marimuthu Poornima, Tina Raju, Roshni E R, Sirajudheen Mukriyan Kallungal, Lekshmi Ms Panicker, Saranya K G, Shilpa V P,
Volume 21, Issue 3 (9-2024)
Abstract
Biogenic synthesis of papain-conjugated copper metallic Nanoparticles and their antibacterial and antifungal activities Papain metallic conjugated nanoparticles (Papain-CuNPs) were synthesised using Papain and CuSO4.5H2O. Papain-CuNPs were characterized using UV-visible spectroscopy, FT-IR, HR-TEM, XRD, FE-SEM, zeta potential, and a zeta sizer. The antibacterial activity of papain-CuNPs against human infectious microorganisms (Citrobacter spp, Pseudomonas aeruginosa and Candida albicans) was investigated. The mechanism of action of papain-CuNPs was evaluated using FE-SEM and HRTM. UV spectroscopy confirmed the plasma resonance (SPR) at 679 nm, which indicated the formation of papain-CuNPs. The FT-IR spectrum absorbance peaks at 3927, 3865, 3842, 3363, 2978, and 2900 cm-1 indicate the presence of O-H and N-H of the secondary amine, and peaks at 1643 and 1572 cm-1 represent C=O functional groups in Papain-CuNPs. EDAX analysis confirmed the presence of copper in the papain-CuNPs. The zeta potential (-42.6 mV) and zeta size (99.66 d. nm) confirmed the stability and size of the nanoparticles. XRD confirmed the crystalline nature of the papain-CuNPs. FE-SEM and HRTM showed an oval structure, and the nano particles' 16.71244–34.84793 nm. The synthesized papain-NPs showed significant antibacterial activity against clinical P. aeruginosa (15 mm). MIC 125 µg/ml) showed bactericidal activity against P. aeruginosa and the mechanism of action of Papain-NPs was confirmed using an electron microscope by observing cell damage and cell shrinking. Papain-CuNPs have significant antibacterial activity and are thus used in the treatment of P. aeruginosa infections