Showing 39 results for Treatment
A. Khalili, M. Mojtahedi, M. Goodarzi, M. J. Torkamani,
Volume 16, Issue 3 (9-2019)
Abstract
The aim of this work was to synthesize TiC reinforced coating on carbon steel via reduction of ilmenite powder. A mixture of ilmenite and graphite was pre-placed on AISI 1020 steel surface. The effect of the addition of excess graphite amounts on the progress of synthesis of carbide particles was studied. The evolution of phases in different coatings was analysed via X-ray diffraction and scanning electron microscopy. Then again, the initial powder mixtures were mechanically activated for various durations, to accelerate the reactions in transient melt pool. Finally, the Fe-TiC hard coating was successfully synthesized by carbothermic reduction of ilmenite through laser surface treatment. Moreover, it is proved that combination of mechanical activation with additive laser melting effectively improves the level of ilmenite reduction, besides enhancing the distribution of hard particles and the hardness of the coatings to more than 1300 HV.
V. Dave, R. Kotian, P. Madhyastha, K. Boaz, P. Rao, B.p. Charitha,
Volume 16, Issue 4 (12-2019)
Abstract
The aim of the present study is to assess the hardness, corrosion, and cytotoxicity of a commercially available cobalt-chromium (Co-Cr) alloy before and after simulated heat treatments at porcelain firing temperature. Five Co-Cr samples were fabricated using lost wax casting procedure. Heat treatments were carried out at 650°C, 750°C, 850°C, and 950°C. Vickers hardness was measured for as-cast and heat treated samples. The corrosion test was carried out separately in 0.1 N NaCl, 1% citric acid and artificial saliva at room temperature using potentiodynamic polarization technique. Gingival tissue biopsy of patients was taken and cultured to measure the cell viability by MTT colorimetric assay. Lowest hardness was observed at 650°C. 0.1 N NaCl and 1% citric acid corrosion medium showed a similar trend of corrosion rate. The least corrosion rate was found in artificial saliva. Firing temperature has an impact on the physical, chemical and biological properties of Co-Cr alloy in long-term clinical use.
M. Azadi, M. Ferdosi, H. Shahin,
Volume 17, Issue 1 (3-2020)
Abstract
In this paper, the effects of solutioning and various aging heat treatment processes on the microstructure, the hardness and electrochemical properties of a duplex stainless steel (DSS) were studied. The evaluation of the microstructure and phase compositions were carried out by the optical microscopy (OM) and the X-ray diffraction (XRD), respectively. Electrochemical behaviors of specimens were evaluated by both potentiodynamic polarization and electrochemical impedance spectra (EIS) tests at temperatures of 25 and 60 ºC. The obtained results showed that the solutioning heat treatment increased corrosion rates with respect to the blank specimen. The aging process at 490 ºC for 20 hrs increased the volume percent of the carbide phase to the highest value (25.1%) which resulted in an increase of the hardness value to 170 VHN. The specimen which was aged at 540 ºC for 10 hrs with the Cr7C3 size of 22.8 µm, exhibited the higher corrosion resistance at both temperatures of 25 and 60 ºC with respect to other aged specimens. In addition, the temperature of 60 ºC promoted the anodic reactions in 3.5 wt% NaCl solution which decreased impedance modulus values significantly. Consequently, the carbide size was more effective parameter than the carbide content in predicting electrochemical behaviors of such alloys.
Sasan Ranjbar Motlagh, Hosein Momeni, Naser Ehsani,
Volume 18, Issue 1 (3-2021)
Abstract
In this study, the effect of annealing treatment on microstructure and mechanical properties of Nb-10Hf-1Ti wt.% produced by Spark Plasma Sintering (SPS) was investigated. Scanning electron microscope (SEM), optical microscopy, X-ray diffraction analysis, hardness, and uniaxial tension test were used. Annealing treatment was carried out in a vacuum of 10-3 Pa at 1150 °C for 1, 3, 5, and 7 hours and in an argon atmosphere at 1350 °C for 5 hours. Internal oxidation and subsequent hafnium oxide formation causes the hardening of the C103 alloy and drastically increases hardness and tensile strength. Although HfO2 particles formed in the grain boundary cause brittleness and cleavage fracture of samples. Volume fraction, particle size, and mean interparticle spacing of oxides significantly change by annealing and subsequently the mechanical properties are affected. The SPSed sample at 1500 ℃ is softened by annealing at 1150 ℃ for 5 hours and its hardness and yield strength are reduced from 303 Hv to 230 Hv and 538 MPa to 490 MPa respectively. While annealing at 1350 ℃for 5 hours increases hardness and yield strength increases to 343 Hv and 581 MPa.
Masumeh Mohammadi, Hamidreza Rezaei Ashtiani,
Volume 18, Issue 2 (6-2021)
Abstract
The hot deformation behavior of the heat-treated AA6061 and AA 6063 aluminum alloys by T6-1, T6-2 artificial aging treatment, and O annealing treatment were studied by compression testing over a temperature range of 350–550
and strain rates of 0.005-0.1 s
-1. It was observed that the flow stresses of the studied aluminum alloys treated by the T6-1 and T6-2 heat treatments were significantly higher than those of the O annealing treatment. Moreover, the stress-strain curves of the heat-treated alloys by the T6-1, T6-2, and O heat treatments demonstrated significant softening during deformation at the lowest strain rate under any of the deformation conditions. For several strains, the activation energy of hot deformation was specified and obtained to vary significantly with strain for the heat-treated alloys by the T6-1 and T6-2 treatments. The stress-strain data calculated from a linear equation, with strain-dependent parameters, shows a great fit with the experimental data for the heat-treated aluminum alloys.
Saeed G. Shabestari, Sahar Ashkvary, Farnaz Yavari,
Volume 18, Issue 3 (9-2021)
Abstract
The influence of melt superheating treatment on the solidification characteristics and microstructure of Al–20%Mg2Si in-situ composite has been investigated. The results revealed that melt superheating temperature has a significant effect on solidification parameters and morphology of primary Mg2Si particles. Solidification parameters acquired using cooling curve thermal analysis method, indicate that both nucleation temperature and nucleation undercooling of primary Mg2Si particles increase by increasing melt superheating temperature, while recalescence undercooling decrease under the same condition. Also, based on the microstructural evaluations, melt superheating treatment can refine primary Mg2Si particles and alter their morphology from dendritic shape to more spherical shape and the eutectic microstructure of a-Al + Mg2Si becomes finer and the distance between eutectic layers becomes smaller.
Mitra Ghannadi, Hediye Hosseini, Bagher Mohammad Sadeghi, Bahman Mirzakhani, Mohammad Tahaaha Honaramooz,
Volume 18, Issue 3 (9-2021)
Abstract
The objective of the present paper is to investigate the effects of rapid heating and cryogenic cooling on on the microstructure and tensile properties of Al-Cu-Mg. The specimens were subjected to three heat treatment cycles in which the Infrared heating (IR) were used as the heating medium at the ageing stage, and the liquid nitrogen and water were used as the quenching mediums. The ageing temperature and time were 190⁰C and from 2 hours to 10 hours, respectively.The results indicated that by using IR at the ageing stage, the hardening rate enhanced because the rapid heating via this method leads to faster diffusion of the alloying elements. Moreover, the high density of nano-sized precipitates formed during ageingleads to higher strength and suitable ductility. Cryogenic treatment showed a negligible effect on both microstructure and tensile properties; however, it improved ductility. Overall, the combination of a high heating rate and cryogenic treatment led to the highest mechanical properties. SEM micrograph of the fracture surface of alloy demonstrated that in Cryogenic treatment+Artificial Ageing (CAA) condition, the surface had been fully covered by deep dimples in contrast to the Cryogenic treatment+Infrared Heating (CIR) and Water-Quench+ Infrared Heating (QIR) conditions which their dimples were shallow and also some facets were observed.
Anas Al-Reyahi, Salem Yahya Degs, Ayman Issa, Zyad Khattari, Mohammed Abu Al Sayyed,
Volume 18, Issue 4 (12-2021)
Abstract
The structural properties of a natural clay sample (51% kaolinite) were tweaked to suit specific applications. H2SO4 and NaOH (1.0 M) treatment caused structural alterations and a significant release of Al ions compared to Si ions. Chemical treatment caused structural alterations, according to XRD analysis. FTIR analysis also indicated higher density of polar surface groups upon treatment which affected the corresponding dielectric behaviors. Dielectric measurements shown the suitable application of the materials either as dielectrical insulator and this dependent on the applied frequency. Acid treated kaolinite was reported to be a promising dielectric at 10 and 1000 Hz. With appropriate mass attenuation coefficients (μ/ρ) 12.098-12.182 cm2/g and a high half value layer of 10 cm at 10 keV, kaolinite and other treated forms were adequate shielding materials.
Mohammad Reza Zamani Meymian, Razieh Keshtmand,
Volume 18, Issue 4 (12-2021)
Abstract
Tin oxide (SnO2) is used as an electron transport layer (ETL) in perovskite solar cells with a planar
structure due to its good transparency and energy level alignment with the perovskite layer. The modification
interface of the electron transport layer and the perovskite absorber layer plays an important role in the efficient
charge extraction process at the interface. In this study, planar perovskite solar cells with configuration
(FTO/SnO2/mixed-cation perovskite/CuInS2/Au) were prepared to investigate the effect of UV-Ozone (UVO) treated
SnO2 as ETL on the performance of devices. ETL treatment was performed at different times (0 to 60 min). It is
shown that surface wetting was improved by UVO treating the SnO2 films prior to deposition of the perovskite layer.
The latter improves the contact between the ETL and the perovskite layer, allowing more efficient electron transport
at the interface. Contact angle, SEM, photoluminescence spectra, and the current density-voltage tests were
conducted to characterize the photovoltaic of the cells. The best PSC performance with a power conversion
efficiency of 10.96% was achieved using UVO-treated SnO2 ETL for 30 min, whereas the power conversion
efficiency of the perovskite solar cells with SnO2 ETL without UVO treatment was only 4.34%.
Hamid Reza Rezaei Ashtiani, Shahab Moghaddam,
Volume 19, Issue 1 (3-2022)
Abstract
In this study, the effects of heat treatment of aluminum alloy on the tube bending process were investigated in the rotary draw bending process. As two experimental and numerical simulation methods were used to determine the wall-thinning, ovality, and spring back for extruded, annealed, and aged AA6063 aluminum alloy tubes in different bending angles and bend radii. Numerical simulations were done by the finite element method with Abaqus software. The results indicated that in comparison with annealed and extruded parts, wall-thinning reduced whereas the amount of ovality and spring-back increased in the aged tubes. Also, in each case, the percentage of wall-thinning decreased with increasing bend radius, and the effect of bend radius was greater in the reduction of ovality from the bending angle. Investigations showed that the spring-back rate also decreased with an increasing bending angle.
Morteza Hadi, Omid Bayat, Hadi Karimi, Mohsen Sadeghi, Taghi Isfahani,
Volume 19, Issue 1 (3-2022)
Abstract
In this research, the effect of initial microstructure and solution treatment on rollability and crystallographic texture of a Cu-Mn-Ni-Sn alloy has been investigated. The initial tests indicated that the rolling of the alloy at different temperature conditions is not possible due to formation of second phases. Herein to eliminate the segregated phases, according to DTA analysis, proper temperature for solution treatment was selected as 750°C applied at different periods of time. The obtained results showed that after 15-hour solution treatment, the complete elimination of Sn, Mn, Ni, and Fe-rich phases can be achieved. Also, the peaks of XRD shifted to the higher angles indicating that the alloying elements are dissolved. Meanwhile, the intensity of the texture reduced and the dominant texture changed from Goss and Brass-texture to Copper-texture. Accordingly, the amount of maximum total reduction at the rolling process increased from 16.37 to 109.46 after solution treatment.
Abdur Rahman, Serajul Haque,
Volume 19, Issue 3 (9-2022)
Abstract
The effect of the milling time & ageing on the hardness, density, and wear characteristics of Al 7150 alloy specimens made via powder metallurgy has been studied. The different constituents of Al 7150 alloy were processed in a planetary ball milling set up with a BPR of 10:1 for 5 hours, 10 hours, and 20 hours. At 400 °C, the milled powders were subsequently hot compacted in a punch die setup. The hot-pressed specimens were solutionized initially, then aged artificially at 115 °C for 3, 6, 12, 24, 30, 45, 60, and 96 hours. The relative density was inversely proportional to the milling time. Microhardness tests showed a maximum VHN of 255 was measured for the 24 h aged T6 specimens produced from 20 h milled powders whereas the non-aged specimens, made from unmilled 7150 alloy powders showed a VHN of 40. However the samples showed a decline in microhardness beyond 24 h of ageing. Under various conditions of sliding distance and loading conditions, the samples subjected to T6 aging showed a reduced volumetric wear rate indicating the beneficial effect of artificial aging up to 24 hours. The volumetric wear rate gradually declined for the samples aged beyond 24 hours of aging. The HRTEM studies revealed a high density of uniformly scattered (MgZn2) precipitates in the base matrix, as well as (MgZn2) phases precipitating along grain boundaries. The presence of such second phase precipitates in the matrix improved the wear characteristics of the alloy matrix. The results showed that optimization of process parameters such as milling time, ageing as well as reducing the particle size of the base powders, the hardness and wear behavior of Al 7150 alloy may be improved.
Mohammad Abankar, Hossein Arabi, Mohammad Taghi Salehi, Majid Abbasi,
Volume 20, Issue 1 (3-2023)
Abstract
The aims of this research were to evaluate the effects of different thermomechanical treatments on the microstructure and investigate some of the mechanical properties of a TWIP steel rich in Mn & Al. So, a block of a TWIP steel with nominal composition Fe-17.5Mn-1.36Al-0.8C was cast and then subjected to hot rolling followed by cold rolling and heat treatment. Cold rolling was performed before heat treatment in order to reduce the grain size and improve the tensile and fatigue properties. X-ray diffraction technique was used before and after the heat treatment to evaluate the possibility of any phase formation. No sign of martensitic transformation after cold deformation was observed. However, by increasing the amount of cold deformation, the number of mechanical twins and slip band increased resulted to an increase in hardness and strength. The best tensile and fatigue result were obtained after 47% thickness reduction and annealing at 715˚C for 10 min. Under these conditions, the mean grain size reduced from 138 to 9 μm resulted to an increase in yield strength from 395 to 510 MPa, and the fatigue life improvement from the mean life of 10200 for the cast sample to 21500 cycles for the treated sample, when these samples underwent fatigue tests at a stress range of 650 MPa and R=0. In addition, the diameter and depth of dimples in fracture surfaces decreased by reducing the grain size but the fracture mode was remained ductile and adequate plastic deformation occurred before failure.
Sandeep Ramasamy Periasamy, Vaira Vignesh Ramalingam, Ajay Vijayakumar, Harieharran Senthilkumaran, Vyomateja Sajja, Padmanaban Ramasamy, Samuel Ratna Kumar Kumar Paul Sureshkumar ,
Volume 20, Issue 2 (6-2023)
Abstract
Novelty: Most of the open literature research has focused on the microstructural evolution and mechanical properties of AA2050 alloy. Also, a significant study discusses the corrosion behavior of AA2050 alloy based on immersion and electrochemical characteristics. The influence of heat treatment on the microstructure and mechanical properties of friction stir processed AA2050 alloy is scarcely discussed in the open literature. The hot salt corrosion characteristics of friction stir processed AA2050 seldom exists in the available literature. This study concentrates on microhardness, tensile strength, and corrosion properties of friction stir processed AA2050. Also, the work focuses on the influence of artificial aging on the microhardness, and tensile strength of the friction stir processed AA2050.
Mohammad Alipour,
Volume 20, Issue 2 (6-2023)
Abstract
This study was undertaken to investigate the influence of graphene nano sheets on the structural characteristics and dry sliding wear behaviour of Al-5Cu-1Mg aluminium alloy. The optimum amount of GNPs for proper grain refining was selected as 0.5 wt.%. T6 heat treatment was applied for all specimens before wear testing. Significant improvements in wear properties were obtained with the addition of GNPs combined with T6 heat treatment. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of Al-5Cu-1Mg aluminium alloy to the dry sliding wear. The results showed that dry sliding wear performance of without T6 microstructure specimens was a lower value than that of with T6 specimens.
Mohammad Porhonar, Yazdan Shajari, Seyed Hossein Razavi, Zahra-Sadat Seyedraoufi,
Volume 20, Issue 3 (9-2023)
Abstract
In this research, after pressing in a cylindrical mold, the AA 7075 alloy swarf was melted and cast in a wet sand mold. After rolling and cutting, sheets with two different thicknesses of 6 and 20 mm were obtained. The sheets after homogenization were solutionized at 485°C for 30 and 90 minutes, respectively, due to differences in thickness and thermal gradients. The solutionized samples were quenched in 3 polymer solutions containing 10, 30, and 50% Poly Alekylene Glycol. The results showed that melting, casting, rolling, and heat treatment of AA7075 alloy swarf similar properties to this alloy is achievable. Microstructural studies by optical microscopes (OM), Field Emission Scanning Electron Microscopy (FESEM), and X-ray diffraction (XRD) showed that by increasing the quenching rate after the solutionizing process, precipitation increases during aging. The tensile test results indicated that as the quench rate and internal energy increase, the diffusion driving force would increase the precipitation of alloying elements. Hence, this leads to an increase in hardness and reduction of its strain after aging.
Ali Hosseinian Naeini, Seyed Ali Hosseini Moradi,
Volume 20, Issue 4 (12-2023)
Abstract
The growth of industries, populations, and industrial activities includes environmental pollutants. Pollution causes problems such as reduced light transmission, anaerobic conditions, and complications such as allergies and cancer for humans and other living organisms. The adsorption method is one of the most attractive, and efficient methods for removing environmental pollutants such as pharmaceuticals. Among the standard methods for wastewater treatment, adsorption is more efficient than other methods and is more economical. They have a meager price. Adsorption of pollutants can be an excellent way to remove toxic substances from polluted waters and industrial effluents. In this review, pharmaceutical removal by adsorption process was reviewed in details.
Sajad Ghaemifar, Hamed Mirzadeh,
Volume 20, Issue 4 (12-2023)
Abstract
Phase transformations and the evolution of hardness during elevated-temperature annealing of Inconel 718 superalloy manufactured by the laser powder bed fusion (L-PBF) were investigated. The microstructural evolution, elemental analysis, phase formation, and hardening were characterized by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and Vickers indentation test, respectively. It was observed that the effect of annealing treatments is directly governed by the annealing parameters (i.e. time and temperature), for which the hardness measurement as a fruitful and convenient tool can reveal this effect. The increase of the hardness, which was obtained by the annealing (aging) treatments at the temperature range of 800-900 °C, indicated precipitation of the Ni3Nb γ˝ strengthening phase; while owing to the coarsening of precipitates as a results of overaging at this temperature range, the hardness decreased. For instance the length and aspect ratio of precipitates in the aged sample at 800 °C for 1 h is 67.14 nm and 0.32, respectively; while these values in the aged sample at 800 °C for 8 h is 78.34 nm and 0.44, respectively. On the other hand, the decrease of the hardness at temperatures of 950 and 1000 °C was attributed to the decrease of dislocation density in conjunction with the Ni2Nb Laves phase dissolution. Hence, it is crucial to determine the annealing parameters according to the required microstructure and properties.
Yugen Kulkarni, Niketa Pawar, Namrata Erandole, Muskan Mulani, Mujjamil Shikalgar, Swapnil Banne, Dipali Potdar, Ravindra Mane, Smita Mahajan, Prashant Chikode,
Volume 21, Issue 1 (3-2024)
Abstract
The paper investigates the solar photodegradation of Methylene Blue dye using copper oxide (CuO) thin films synthesized by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The structural, morphological, and optical characteristics of the CuO thin films have been investigated by employing a variety of methods, such as Fourier transform Infrared (FTIR) spectroscopy, UV-Vis spectroscopy, Scanning electron microscopy (SEM), and X-ray diffraction (XRD). The outcomes showed that CuO thin films with excellent surface shape and a highly crystalline nature had been successfully deposited. Methylene Blue was subjected to solar radiation during its photodegradation process, and the outcomes showed a significant decrease in the dye's concentration over time. To maximize the photo degradation process, the effects of other experimental factors were also assessed, such as the starting concentration of MB, the quantity of CuO thin film, number of SILAR cycles and the pH of the solution. Good photocatalytic activity is demonstrated by CuO thin films produced using the SILAR approach in the solar photodegradation of methylene blue. The development of affordable and ecologically friendly wastewater treatment technology that can use sun energy to break down persistent organic contaminants is affected by these findings.
Tumelo Moloi, Thywill Cephas Dzogbewu, Maina Maringa, Amos Muiruri,
Volume 21, Issue 3 (9-2024)
Abstract
The stability of microstructure at high temperatures is necessary for many applications. This paper presents investigations on the effect of changes in temperature on the microstructures of additively manufactured Ti6Al4V(ELI) alloy, as a prelude to high temperature fatigue testing of the material. In the present study, a Direct Metal Laser Sintering (DMLS) EOSINT M290 was used to additively manufacture test samples. Produced samples were stress relieved and half of these were then annealed at high temperatures. The samples were then heated from room temperature to various temperatures, held there for three hours and thereafter, cooled slowly in the air to room temperature. During tensile testing, the specimens was heated up to the intended test temperature and held there for 30 minutes, and then tensile loads applied to the specimens till fracture. Metallographic samples were then prepared for examination of their microstructures both at the fracture surfaces and away from them. The obtained results showed that changes in temperature do have effects on the microstructure and mechanical properties of Ti6Al4V(ELI) alloy. It is concluded in the paper that changes in temperature will affect the fatigue properties of the alloy.