Showing 5 results for Amorphous
S. Ahmadi,, H. R. Shahverdi*, S. S. Saremi,
Volume 7, Issue 4 (10-2010)
Abstract
Abstract: In this research work, crystallization kinetics of Fe55Cr18Mo7B16C4 alloy was evaluated by X-ray diffraction, TEM observations and differential scanning calorimetric tests. In practice, crystallization and growth mechanisms were investigated using DSC tests in four different heating rates. Results showed that a two -step crystallization process occurred in the alloy in which - Fe phase was crystallized in the first step after annealing treatments. Activation energy for the first step of crystallization i.e. - Fe was measured to be 276 (kj/mol) according to Kissinger model. Further, avrami exponent calculated from DSC curves was 2 and a three -dimensional diffusion controlled mechanism with decreasing nucleation rate was observed in the alloy. It is also known from the TEM observations that crystalline á – Fe phase nucleated in the structure of the alloy in an average size of 10 nm and completely mottled morphology.
S. Ahmadi, H. R. Shahverdi,
Volume 10, Issue 4 (12-2013)
Abstract
Crystallization kinetics of Fe52Cr18Mo7B16C4Nb3 alloy was evaluated using X-ray diffraction, differential scanning calorimetric (DSC) tests and TEM observations in this research work. In effect, crystallization and growth mechanisms were investigated using DSC tests in four different heating rates (10, 20, 30, 40 K/min) and kinetic models (i.e. Kissinger- Starink, Ozawa, and Matusita methods). Results showed that a two -step crystallization process occurred in the alloy in which α - Fe and Fe3B phases were crystallized respectively in the structure after heat treatment. Activation energy for the first step of crystallization i.e., α - Fe was measured to be 421 (kj/mol) and 442 (kj/mol) according to both Kissinger- Starink and Ozawa models respectively. Further, Avrami exponent calculated from DSC curves was 1.6 and a two -dimensional diffusion controlled mechanism with decreasing nucleation rate was observed in the alloy. TEM observations reveal that crystalline α – Fe phase nucleated in the structure of the alloy in an average size of 10 nm and completely mottled morphology
F. Farzan, H. R. Shahverdi, F. Malek Ghaeni,
Volume 15, Issue 2 (6-2018)
Abstract
Recently, wear resistant properties of metallic glasses has attracted a lot of interest. Because the surface of metallic glasses are prone to phase transformation, finding the effects of test condition on structure and wear behavior of metallic glasses is important. In this research, by using an automated electrospark deposition (ESD), a layer of Fe
51Cr
18Mo
7B
16C
4Nb
4 was deposited on AISI 316l stainless steel. Metallographic,
scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDS) analyses of the coating were conducted for measuring the thickness and analyzing composition of the coating. X-ray diffraction (XRD), Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) investigations showed that the structure of the coating was amorphous. Ball on disc wear tests were conducted in dry and wet conditions and Ringer’s solution was chosen as the wetting agent. The wear test results showed that the coefficient of friction in dry condition was lower than the wet condition and wear modes were fatigue and corrosive wear in dry and wet conditions respectively. SEM and EDS analyses showed different features and elemental inhomogeneity on the surface of the dry wear track, which were not detectable in wet wear track. In addition, activation of diffusion process and formation of carbides and borides were observed on the wear track in dry condition.
Ali Hasanzade Salmasi, Mahban Zarei, Shadab Safarzadeh Khosroshahi, Soolmaz Heidari, Farhood Najafi, Mojtaba Ghomayshi, Katayoun Lesani,
Volume 20, Issue 3 (9-2023)
Abstract
Amorphous calcium phosphate (ACP) which is a transient phase in natural bio-mineralization process has recently gained the spotlight. This study aimed to assess the effect of incorporation of nano-ACP (NACP) in a dental adhesive with/without surface treatment with silane coupling agent on bond strength. NACP was synthesized by the wet chemical precipitation technique. To characterize the structure of NACP, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy were used. Forty molars were randomized into 4 groups of 10. The teeth were restored with composite resin and the bonding agent (one of the four groups). Adper Single Bond 2 was used as the control group. In 4wt% NACP group, NACP fillers were added to the bonding agent. In 0.4wt% and 4wt% SNACP groups, silanized NACP fillers were added to the bonding agent. Finally, the mode of failure of specimens was determined. Data were analyzed by one-way ANOVA and Tukey's post-hoc tests. P<0.05 was considered statistically significant. Addition of 4wt% non-silanized NACP decreased the bond strength compared with the control group (P<0.05). The bond strength of the groups with silanized fillers was not significantly different from that of the control group. Addition of silanized NACP to dental adhesive had no significant adverse effect on bond strength, which is a promising finding to pave the way for the synthesis of bonding agents containing bioactive fillers.
Dipali Potdar, Sushant Patil, Yugen Kulkarni, Niketa Pawar, Shivaji Sadale, Prashant Chikode,
Volume 21, Issue 1 (3-2024)
Abstract
The Nickel tungsten (Ni-W) alloy was electrodeposited on stainless steel (SS) substrate using potentiostatic mode at room temperature. Potentiostatic electrodeposition was carried out by varying the deposition time. The physicochemical properties of Ni-W alloys were studied using X-Ray diffraction (XRD), Electron Microscopy and micro-Raman spectroscopy. Recorded XRD spectra was compared with standard JCPDS card and the presence of Ni was confirmed, no such peaks for W were observed. Further study was extended for micro-Raman analysis. From Raman spectroscopy study the appearance of Ni-O and W6+=O bonds confirms that the Ni-W present in amorphous phase. Several cracks were observed in SEM images along with nanoparticles distributed over the electrode surface. The appearance of cracks may be correlated with the in-plane tensile stresses, lattice strains and stacking faults and may be related to the substrate confinements.