M. M. Kashani Motlagh, A. A. Youzbashi, Z. Amiri Rigi,
Volume 8, Issue 4 (12-2011)
Abstract
A natural bentonite obtained from Khorasan, Iran, was submitted to acid activation with sulphuric acid. Sample aliquots (5gr)
were leached with 100 ml H2SO4 solutions of various concentrations (2–7N) at 80±2 oC for 2 hours. X–ray diffraction, chemical analysis, infrared spectroscopy and specific surface area measurements were performed in order to evaluate important structural modifications occurring as a result of acid attack. Octahedral sheet was affected by acid activation resulting into the dissolution of cations (Mg2+, Fe2+, Al3+) and consequent decomposition of montmorillonite structure. Bentonite samples were then tested in order to verify their capacity to bleach colza–soybean oil, and their performances were compared to that of a commercial bleaching clay. The bleaching ability of the natural clay was poor when compared with that of the industrial adsorbent. Acid activation of the bentonite sample with 7N sulphuric acid yielded an adsorbent material which was highly efficient in the bleaching of the oil functioned better than the commercial clay product under the same conditions.
A. Allahverdi, Z. Padar, M. Mahinroosta,
Volume 16, Issue 2 (6-2019)
Abstract
It is demonstrated that the addition of organo-modified Na-bentonite (OMB) particles to Portland cement mortar can promote its physical and mechanical properties. A series of experimental works on some important physico-mechanical properties of Portland cement mortars mixed with various dosages of hydrophobic OMB were performed. The obtained results confirm that the OMB provides a dense packing effect. An optimum replacement level of around 3.5% (by weight) at an increased water-to-cement ratio of 0.53 results in an almost 11.43% increase in 28-day compressive strength along with about 20.78 and 16.20% reductions in total volume of permeable pore space and water absorption, respectively. Also, at the optimum replacement level, an increase of about 2.72% is taken place in dry bulk specific gravity.