Showing 2 results for Bioglass
Mr. Hossein Minouei, Dr. Mohammadhossein Fathi, Dr. Mahmood Meratian, Mr. Hossein Ghazvinizadeh,
Volume 9, Issue 3 (9-2012)
Abstract
ASTM F-75 Cobalt-base alloy castings are widely used for manufacturing orthopedic implants. This alloy needs both homogenization and solutionizing heat treatment after casting, as well as bioactivation of the surface to increase the ability of tissue bonding. In this study, ASTM F-75 Cobalt-base substrate was heat treated at 1220°C for 1 hour in contact with Hydroxyapatite-Bioglass powder in order to solutionize and homogenize the microstructure and promote surface bioactivation. For bioactivity evaluation, heat treated specimens were immersed in Simulated Body Fluid (SBF). Surface of specimens before and after the immersion was analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and X-Ray Diffraction (XRD). Results showed an appropriate microstructure with bioactive layer on the surface of specimens after heat treatment. In vitro result and formation of bone-like apatite layer on specimens indicated that heat treated samples were potentially suitable for bone replacement and tissue regeneration under highly loaded conditions.
M. Ghavidel, S. M. Rabiee, M. Rajabi,
Volume 11, Issue 1 (3-2014)
Abstract
In this study, porous titanium composites containing 5, 10 and 15 wt. % nanobioglass were fabricated by
space holder sintering process. The pore morphology and phase constituents of the porous samples were characterized
by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The mechanical properties were determined
by compression test. The porosity of the sintered samples showed an upward trend with an increase in bioglass content.
As the bioglass content was increased, the compressive strength was first increased and then decreased. The results
obtained in this work suggest that the fabricated porous compact with 10 wt. % bioglass with compressive strength
value of about 76.7 MPa, high porosity and good biocompatibility has the potential application for bone tissue
engineering.