Showing 3 results for Biomedical Application
Mohammed Ruhul Amin Bhuiyan, Hayati Mamur,
Volume 18, Issue 3 (9-2021)
Abstract
Carbon-based chemical substances persistence can contribute to adverse health impacts on human lives. It is essential to overcome for treatment purposes. The semiconducting metal oxide is Zinc Oxide (ZnO), which has excellent biocompatibility, good chemical stability, selectivity, sensitivity, non-toxicity, and fast electron transfer characteristics. The ZnO nanoparticles are more efficient compared to other metal oxide materials. Thus, the nanoparticles are in the present research situation to receive increasing attention due to their potential performance of the human body to feel comfortable. The nanoparticles become more promising for biomedical applications through the development of anticancer agents to recovery different types of malignant cells in the human body. The ZnO nanoparticles can be the future potential materials for biomedical applications. The purpose of this paper is to review the cost-effective approach to synthesize the ZnO nanoparticles. Moreover, these ideas can develop for synthesized ZnO biomaterial to perform easily up-scaled in biomedical applications.
Seyedali Seyedmajidi, Maryam Seyedmajidi,
Volume 19, Issue 2 (6-2022)
Abstract
Recently, using calcium phosphates and at the top of them, hydroxyapatite (HA) has been considered in medical and dental applications as an artificial biomaterial due to their chemical and structural similarity to the bodychr('39')s skeletal tissues such as bone and tooth. Because of reinforcement of hydroxyapatitechr('39')s mechanical and biological properties by substitution of OH- groups by F- ions to produce fluorapaptite (FA) has been proven, in this article synthesis methods, properties and medical applications of fluorapatite and its pros and cons in comparison with hydroxyapatite have been reviewed.
Richa Singh,
Volume 21, Issue 1 (3-2024)
Abstract
Drug-resistance among bacteria is a concerning issue in medical field. Silver nanoparticles (AgNPs) are one of the promising novel nano-antibiotics. In the present study, AgNPs were synthesized using cell-free extract of Acinetobacter sp. challenged with silver nitrate. Preliminary observations done using UV-Vis spectrophotometry at 420 nm. Complete reduction of silver ions to AgNPs was confirmed through cyclic voltammetry. Electron microscopy revealed formation of spherical shaped nanoparticles of size upto 20 nm. These AgNPs were furthr used to determine their effect on activity of various antibiotics against pathogenic bacteria such as Neisseria and Xanthomonas. Higher antibacterial activity of AgNPs was observed against Gram-negative bacteria. Enhanced antibacterial action of AgNPs was observed with selected beta-lactam antibiotics producing upto 3-fold increase in area of zone of inhibition. On exposure to AgNPs, the minimum inhibitory concentration and minimum bactericidal concentration of antibiotics were lowered by upto 2000 times indicating potential synergistic action of AgNPs. This study clearly signifies that the drug, proved to be inefficient due to bacterial resistance, could be made functional again in presence of AgNPs. This will help in development of novel antibacterial formulations containing antibiotics and nanoparticles to combat multiple drug-resistance in microorganisms.