Showing 2 results for Coke Bed
M. Heydari Nasab, R. Naghizadeh, H. Samadi, A. Nemati,
Volume 12, Issue 1 (3-2015)
Abstract
Ceramic-matrix composites containing TiC-TiN have been used in a variety of application because of their
superior properties such as high hardness, good wear resistance and high chemical stability. In this research, effect of
coke and coke/calcium beds in synthesis of Al
2O3-Ti(C, N) composites using alumino-carbothermic reduction of TiO
2
has been investigated. Al, TiO
2
and active carbon with additives of extra carbon and NaCl and without additives, in
separate procedures, have been mixed. Afterwards, mixtures were pressed and synthesized in 1200oC for 4hrs, in coke
and coke/calcium beds, separately. Al
2O3-Ti(C,N) composite was synthesized in ternary system of Al-TiO
2
-C with
excess carbon and NaCl additives in calcium/coke bed in 1200 . X-ray diffraction patterns (XRD) results showed that
existence of calcium in bed resulted in intensification of reduction atmosphere in samples and formation of Ti(C,N)
phase enriched from carbon was accelerated. Crystallite sizes of synthesis Ti(C,N) at 1200 °C in reducing conditions
were 22-28 nm.
E. Khoshomid Aghdam, R. Naghizadeh, H. R. Rezaie,
Volume 12, Issue 3 (9-2015)
Abstract
MgAl2O4/Ti(C,N) composites were synthesized through aluminothermic reaction between Al,TiO
2,MgO
powders and phenolic resin in coke bed condition. Effect of addition of carbon black and sugar into the mixture at
different temperatures were investigated. The phases and microstructures of samples were investigated by X-ray
diffraction (XRD) and scanning electron microscopy (SEM). MgAl
2O4
/Ti(C,N) composites without additive were
obtained after heat treatment at 1600˚C. With addition of carbon black TiC, TiN and Ti(C,N) were appeared after firing
at 1400˚C and formation of spinel/Ti(C,N) composites were completed at 1600˚C. In sample containing sugar,
MgAl2O4
-Ti(C,N) composite were completely synthesized at 1400˚C. In this sample crystallite size of Ti(C,N) were 32
nm and carbon content of titanium carbonitride (Ti(C,N)) reached to 0.442 value.