Farid Lekmine, Hachemi Ben Temam, Elhachmi Temam,
Volume 18, Issue 3 (9-2021)
Abstract
Nickel phosphorus alloy coatings were prepared by electrodeposition route from sulfate electrolyte bath at various current densities. SEM studies reveal spherical grains covered the entire surface with uniform distribution. EDX results showed a linear increase of P content in the developed deposits with current density and therefore, enhancing the grains size and drop of the hardness values. XRD studies reveal monocrystalline orthorhombic alloys at a low amount of phosphorus (10.88 wt. %). Corrosion tests show that 1 A.dm-2 is the best applied current density giving the nobler Ecorr (-171.4 mV) and the lower icorr (4.64 µA/cm2).
Ahmad Ostovari Moghaddam, Olga Zaitseva, Sergey Uporov, Rahele Fereidonnejad, Dmitry Mikhailov, Nataliya Shaburova, Evgeny Trofimov,
Volume 21, Issue 3 (9-2024)
Abstract
High entropy intermetallic compounds (HEICs) are an interesting class of materials combining the properties of multicomponent solid solutions and the ordered superlattices in a single material. In this work, microstructural and magnetic properties of (CoCuFeMnNi)Al, (CoCuFeMnNi)Zn3, (FeCoMnNiCr)3Sn2, (FeCoNiMn)3Sn2 and Cu3(InSnSbGaGe) HEICs fabricated by induction melting are studied. The magnetic properties of the HEICs was determined mainly by the nature of the magnetic momentum of the constituent elements. (CoCuFeMnNi)Al and (CoCuFeMnNi)Zn3 displayed ferromagnetic behavior at 5 K, while indicated linear dependency of magnetization vs. magnetic (i.e. paramagnetic or antiferromagnetic state) at 300 K. The magnetization of (FeCoMnNiCr)3Sn2, (FeCoNiMn)3Sn2 and Cu3(InSnSbGaGe) HEICs at 300 K exhibited a nearly linear dependency to magnetic field. Among all the investigated samples, (CoCuFeMnNi)Al exhibited the best magnetic properties with a saturation magnetization of about Ms = 6.5 emu/g and a coercivity of about Hc = 100 Oe.