F. Hosseinabadi, A. Rezaee-Bazzaz, M. Mazinani, B. Mohammad Sadeghi,
Volume 17, Issue 1 (3-2020)
Abstract
An experimental–numerical methodology was used in order to study the microstructural effects on stress state dependency of martensitic transformation kinetics in two different TRIP800 low alloy multiphase steels. Representative volume elements extracted from actual microstructure have been utilized for simulating the mechanical behavior of mentioned steels. The mechanical behavior for each constituent phases required in the model has been taken out from those reported in the literature. A stress invariant based transformation kinetics law has been used to predict the martensitic phase transformation during deformation. Crystallographic and thermodynamic theories of martensitic phase transformation have been utilized for estimating the constant parameters of the kinetics law, in a recently performed investigation, but the sensitivity of the transformation to the stress state remained as an adjusting parameter. The results of the current work show that the stress state sensitivity of martensitic phase transformation in the investigated steels is microstructure-dependent and the value of this parameter is almost equal to half of the bainite volume fraction. Therefore, the volume fraction of bainite in the low-alloy multiphase TRIP800 steels can be used as a first postulation for the value of the martensitic phase transformation sensitivity to the stress state and the microstructure based model previously developed for calculating the mechanical behavior of the TRIP800 steels can be utilized as a virtual design tool for development of TRIP steels having specific mechanical properties.
Ali Ebrahimpour, Amir Mostafapour, Naeimeh Hagi,
Volume 20, Issue 1 (3-2023)
Abstract
In this research, the effect of RSW parameters including current intensity, welding time and welding force (coded by A, B and C) on the radius, thickness and area of the nugget and the radius of the HAZ of TRIP steel joints was investigated by DOE and RSM. A 3D coupled thermal-electrical-structural FEM was used to model RSW. To validate the FE model, two TRIP steel sheets were welded experimentally. During welding, the temperature was measured and the results were compared with the FE results and a good agreement was obtained. The boundaries of the welding zones were determined according to the critical temperatures and the responses in all samples were calculated. Using analysis of variance, direct, quadratic and interaction effects of parameters on the responses were studied and a mathematical model was obtained for each response. The direct linear effects of all parameters on all responses were significant. But among the interaction effects, the effect of B×C on the nugget radius, the effect of A×B on the nugget thickness, the effect of A×B on the nugget area and the effects of A×B and B×C on the HAZ radius were significant. Also, current intensity had the greatest effect on all responses.