Search published articles


Showing 26 results for Nanoparticle

Mir Habibi A.r., Rabiei M., Agha Baba Zadeh R., Moztar Zadeh F., Hesaraki S.,
Volume 1, Issue 3 (9-2004)
Abstract

ZnS : Cu phosphors were prepared by using laboratory grade chemicals through coprecipitating Cu along with ZnS using H2S and thiourea. Photo- and electroluminescence studies indicate that these phosphors have better emission characteristics compared to the phosphors in which activator is externally added. Phosphors with luminescence at ~530nrn were prepared. The difference between the characteristic properties of the samples seems to be due to formation of nanoparticles during the preparation of the samples by different methods.
M. Pirhadi Tavandashti, M. Zandrahimi, B. Akbari,
Volume 6, Issue 1 (3-2009)
Abstract

Abstract: Nanoparticles exhibit a high reactivity and strong tendency towards agglomeration. In this study, aluminum oxide (alumina) nanoparticles were characterized by gas adsorption (BET), transmition electron microscopy (TEM) and photon correlation spectroscopy (PCS) techniques to assess the agglomeration of the particles. There is a good correlation between the BET and TEM measurements but PCS was larger in the mean and median size and with a degree of agglomerates being detected. Some agglomeration was evident, but most of the particles existed as discrete objects as observed in the (HR) TEM images which were in good agreement with the agglomeration factor.
M. Ebrahimi-Basabi,, J. Javadpour,, H. Rezaie, M. Goodarzi,
Volume 6, Issue 1 (3-2009)
Abstract

Abstract: Nano- size alumina particles have been synthesized by mechanical activation of a dry powder mixture of AlCl3 and CaO. Mechanical milling of the above raw materials with the conditions adopted in this study resulted in the formation of a mixture consisting of crystalline CaO and amorphous aluminum chlorides phases. There was no sign of chemical reaction occurring during milling stage as evidenced by x-ray diffraction studies. Subsequent heat treatment of the milled powder at 350ºC resulted in the occurrence of displacement reaction and the formation of Al2O3 particles within a water soluble CaCl2 matrix. The effect of higher temperature calcinations on the phase development in this powder mixture was followed by X-ray diffraction (XRD) analysis and scanning electron microscope ( SEM). Differential thermal analysis (DTA) was used to compare the thermal behavior between the milled and unmilled powders. Perhaps the most important result in this study was the observation of á-Al2O3 phase at a very low temperature of 500ºC.
M. Banoee,z. Ehsanfar, N. Mokhtari,m. R. Khoshayand, A. Akhavan Sepahi, P. Jafari Fesharaki,h. R. Monsef-Esfahani,, A. R. Shahverdi,
Volume 7, Issue 1 (3-2010)
Abstract

Abstracts:

nanoparticles. All the extracts were used separately for the synthesis of gold nanoparticles through the reduction of

aqueous AuCl

gold ions to gold nanoparticles. The ethanol extract of black tea and its tannin free ethanol extract produced gold

nanoparticles in the size ranges of 2.5-27.5 nm and 1.25-17.5 nm with an average size of 10 nm and 3 nm, respectively.

The prepared colloid gold nanoparticles, using the ethanol extract of black tea, did not show the appropriate stability

during storage time (24 hours) at 4

showed no particle aggregation during short and long storage times at the same conditions. To the best of our

knowledge, this is the first report on the rapid synthesis of gold nanoparticles using ethanol extract of black tea and

its tannin free fraction.

In this research the ethanol extract of black tea and its tannin free fraction used for green synthesis of gold4¯. Transmission electron microscopy and visible absorption spectroscopy confirmed the reduction ofoC. In contrast, gold colloids, which were synthesized by a tannin free fraction

B. Akbari, M. Pirhadi Tavandashti, M. Zandrahimi,
Volume 8, Issue 2 (6-2011)
Abstract

Abstract: Most properties of nanoparticles are size-dependent. In fact, the novel properties of nanoaprticles do not prevail until the size has been reduced to the nanometer scale. The particle size and size distribution of alumina nanoparticle, as a critical properties, have been determined by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), surface area analysis (BET) and x-ray diffraction peak broadening analysis. The particle size was found to be in the range of 5-95nm. Cumulative percentage frequency plot of the data extracted form TEM images indicates that particle size distribution obeys the log-normal function. The TEM images also reveal that particles are spherical in shape and loosely agglomerated. Comparing of the XRD and TEM results shows that the particles are single-crystal. The HRTEM images also verify that the particles have a single-crystal nature. In comparison, there is a good correlation between the BET, XRD and TEM measurements other than PCS that is sensitive to the presence of the agglomerates.
Y. Safaei-Naeini, M. Aminzare, F. Golestani-Fard, F. Khorasanizadeh, E. Salahi,
Volume 9, Issue 1 (3-2012)
Abstract

Ultraviolet–Visible (UV–Vis) spectroscopy was used, in the current investigation, to explore the dispersion and stability of titania nanoparticles in an aqueous media with different types of dispersants. Hydrochloric and nitric acids as well as ammonia were used to determine the stability of the suspension in the acidic region (pH=2.5) and basic area (pH=9.5), respectively. In addition, for measuring sustainability of suspension and creating steric, and electrosteric repulsive forces, ethylene glycol and ethylene glycol plus ammonia were employed, respectively. UV–V is
spectrometry was applied to realize the effect of nano titania concentrations and different types of dispersants of samples containing different amounts of nano titania and different types of dispersants on stability of TiO2-containing suspensions. In addition, the stability of dispersion could be evaluated in colloidal mixtures containing ethylene glycol plus ammonia. It was demonstrated that the mixtures containing ethylene glycol plus ammonia were stable over a period of 4 days. To support the UV–Vis results, other techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to study the degree of agglomeration of titania nanoparticles in terms ofmorphology and size.
Simin Janitabar-Darzi, Alireza Mahjoub,
Volume 9, Issue 3 (9-2012)
Abstract

Yellow-colored nitrogen doped TiO2 photocatalyst and a pure TiO2 powder were synthesized via sol-gel method using TiCl4 and urea as raw materials. However, the synthesis procedure for nitrogen doped TiO2 was catalyzed by acid that dialed with controlled precipitation and slow nucleation. According to XRD analysis, the nitrogen doped TiO2 consisted of anatase phase of titania which was a significant achievement regarding its possible photocatalytic applications. The band gaps of nitrogen doped TiO2 and pure TiO2 were estimated from UV-Vis spectroscopy data to be 2.8 and 3.3 ev, respectively. Photocatalytic properties of the nitrogen doped TiO2 nanocatalyst and pure TiO2 were compared for degradation of crystal violet dye in visible light irradiation. In comparison to pure TiO2, nitrogen doped TiO2 showed superior photocatalytic efficiency towards the dye.
N. Bahremandi Tolou, M. H. Fathi, A. Monshi, V. S. Mortazavi,f. Shirani, M. Mohammadi,
Volume 10, Issue 2 (6-2013)
Abstract

Abstract:In recent years, there have been many attempts to improve the properties of dental amalgam. The aim of the present investigation was fabrication and characterization of dental amalgams containing TiO2 nanoparticles and evaluation of their compressive strength, antibacterial and corrosion behavior. In this experimental research, TiO2 nanoparticles (TiO2 NPs) were added to reference amalgam alloy powder and then, dental amalgam was prepared. In order to investigate the effect of TiO2 NPs on properties of dental amalgam, 0, 0.5, 1, 2 and 3 wt. % of TiO2 NPs were added to amalgam alloy powder and the prepared composite powder was triturated by a given percent of mercury. Xray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS) techniques were used to characterize the prepared specimens. Potentiodynamic polarization corrosion tests were performed in the Normal Saline (0.9 wt. % NaCl) Solutions as electrolytes at 37°C. The results showed that the corrosion behavior of the dental amalgam with 0.5 or 1 wt. % TiO2 NPs is similar to the corrosion behavior of the reference amalgam, while with increasing the weight percent of TiO2 NPs, the corrosion rate increases. Also, the results of this investigation indicated that adding TiO2 NPs in amounts of up to 1 wt. % to amalgam alloy powder improve compressive strength of dental amalgam and has no destructive influence on its corrosion behavior. As well as, according to antibacterial results, TiO2 NPs can increase the biocompatibility and antibacterial activity of dental amalgam. The results of present study suggest that amalgam/ TiO2 NPs nanocomposite with 1% of TiO2 NPs could be regarded as a biocompatible and bioactive dental material that provide better characters for dental applications.
M. Kadkhodaee, H. Daneshmanesh, B. Hashemi, J. Moradgholi,
Volume 11, Issue 1 (3-2014)
Abstract

Accumulative roll-bonding process (ARB) is an important severe plastic deformation technique for production of the ultrafine grained, nanostructured and nanocomposite materials in the form of plates and sheets. In the present work, this process used for manufacturing Al/SiO 2 nanocomposites by using Aluminum 1050 alloy sheets and nano sized SiO 2 particles, at ambient temperature. After 8 cycles of ARB process, the tribological properties and wear resistance of produced nanocomposites were investigated. The wear tests by abrasion were performed in a pinon-disc tribometer. Results show that by increasing ARB cycles and the amount of nano powders, the friction coefficient of produced nanocomposites decreases.
Z. Abadi, S. M. Bidoki, V. Mottaghitalab, A. Benvidi, A. Shams-Nateri,
Volume 11, Issue 3 (9-2014)
Abstract

Silver nanoparticles are being given considerable attention because of their interesting properties and potential applications. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. This paper presents a novel direct-writing process for fabrication of the first deposited silver nanoparticles (AgNPs) (50-200nm) electrode via a thermal inkjet printer. In this method, AgNPs were chemically deposited by ejection of ascorbic acid and silver nitrate solutions onto different substrates such as paper and textile fabrics. Silver deposited patterns were used as electrodes in different electrochemical experiments and their morphology was also investigated in SEM observations. The highest conductivity of deposited electrodes obtained on paper as the substrate was found to be around 5.54x105 S/m. Inkjet fabricated electrodes exhibited acceptable electrochemical behavior in experiments designed for measuring the concentration of hydrogen peroxide as a fundamental procedure for early determination of glucose. This novel inkjet silver deposition technique is introduced to be considered as a promising method for ultimate single step fabrication of different electrochemical bio-sensors.
H. Shalchian, A. Farbod, H. Beygi, S. A. Sajjadi,
Volume 12, Issue 1 (3-2015)
Abstract

High energetic aluminum nanoparticles are mainly used as additive in solid rocket propellants. However, fabrication of these aluminized energetic materials is associated with decreasing the burning rate of propellants due to problems such as oxidation and agglomeration of nanoparticles. In this study, to improve combustion performance of aluminum nanoparticles, coating by metallic Ni shell was studied. Nickel coating of aluminum nanoparticles was performed through electroless deposition (ED) subsequently, morphology and chemical composition of Ni-coated nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). These studies show that a uniform Ni layer with a thickness of 10nm is coated on the surface of Al nanoparticles. Thermal analysis of uncoated and Ni-coated aluminum nanoparticles was done using differential thermal analysis (DTA) and thermo gravimetric analysis (TGA). The results of thermal analysis indicate that, coating the aluminum particles by Ni, leads to improvement in combustion performance of aluminum nanoparticles through decreasing critical ignition temperature, ignition delay time of the nanoparticles and promoting the ignition by exothermic chemical reactions between Al and Ni
M. S. Mahmoudi Jozee, S. Sanjabi, O. Mirzaee,
Volume 13, Issue 3 (9-2016)
Abstract

A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs) composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.


R. Hasanzadeh, T. Azdast, R. Eungkee Lee, A. Afsari Ghazi,
Volume 14, Issue 3 (9-2017)
Abstract

Material selection is a main purpose in design process and plays an important role in desired performance of the products for diverse engineering applications. In order to solve material selection problem, multi criteria decision making (MCDM) methods can be used as an applicable tool. Bumper beam is one of the most important components of bumper system in absorbing energy. Therefore, selecting the best material that has the highest degree of satisfaction is necessary. In the present study, six polymeric nanocomposite materials were injection molded and considered as material alternatives. Criteria weighting was carried out through analytical hierarchy process (AHP) and Entropy methods. Selecting the most appropriate material was applied using technique for order preference by similarity to ideal solution (TOPSIS) and the multi-objective optimization on the basis of ratio analysis (MOORA) methods respect to the considered criteria. Criteria weighting results illustrated that impact and tensile strengths are the most important criteria using AHP and Entropy methods, respectively. Results of ranking alternatives indicated that polycarbonate containing 0.5 wt% nano Al2O3 is the most appropriate material for automotive bumper beam due to its high impact and tensile strengths in addition to its low cost of raw material. Also, the sensitivity analysis was performed to verify the selection criteria and the results as well.


R. Ubaid, S. Saroj Kumar, S. Hemalatha,
Volume 15, Issue 3 (9-2018)
Abstract

Drug resistant pathogenic microbes have been causing serious health issues resulting in the substantial increase of death rates and morbidity paving the way for nanoparticles to be utilized as antimicrobial agents. This study was performed to evaluate the effectiveness of CuNPs on the growth of drug resistant clinical isolates of Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis. Minimum inhibitory concentration of CuNPs against Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis was found to be 1.25. 1.25 and 0.625 mg/ml and minimum bactericidal concentration against the same isolates was found to be 2.5, 2.5 and 5 mg/ml respectively. The ratio of MBC/MIC, referred to as tolerance level, was calculated for all the isolates which signifies the bactericidal or bacteriostatic effect of any antimicrobial agent. For Streptococcus pyogenes and Enterococcus faecium, the tolerance level was 2 while as for Enterococcus faecalis, it was 8. Antibiotic susceptibility results were calculated which showed that the isolates were resistant to Ampicillin (10 µg), Amoxycillin (30 µg) and Aztreonam (30 µg). Susceptibility results were followed by calculating multiple antibiotic resistance indices (MARI). MARI is an important tool which gives an idea about the bacterial resistance in a given population. For all the three isolates, MARI results were equivalent to 1 because of their resistance towards all the three antibiotics used. Antimicrobial activity through well-plate method was carried out and inhibitory effect of CuNPs on biofilm formation was evaluated.
 

A. Thakur, G. Reddy,
Volume 17, Issue 3 (9-2020)
Abstract

Mercury, one of the common pollutants in water, is known to affect human health adversely upon exposure. It is released in water not only by various natural processes but also by human activities. Methods developed so far for the detection of mercuric ions in water have limitations like sensitivity range, complex setup, skillful operation etc. Silver nanoparticles, due to unique properties, have been explored by researchers to develop better detection systems.  Stable silver nanoparticles can be easily synthesized by methods of green chemistry, its reaction with mercuric ion can be easily observed by changes in color and UV-Vis spectra. The absorbance data from UV-Vis spectra can also be used in quantifying mercury concentration. In this paper, stable silver nanoparticles synthesized using silver nitrate as precursor, sodium lignosulphonate (LS) as reducing and stabilizing agent under microwave radiation are explored for detection of mercuric ions in water. Formation of AgNP was confirmed by UV-Vis band at 403.5nm. The intensity of this band showed a proportional decrease with increasing Hg+2 concentration. Hg+2 ions were detected by a distinct color change at higher concentration of Hg+2 also.  The limit of detection (LOD) calculated from the observed absorbance data to be 0.7 ppm.

N. Akhlaghi, G. Najafpour, M. Mohammadi,
Volume 17, Issue 4 (12-2020)
Abstract

Modification of MnFe2O4@SiO2 core-shell nanoparticles with (3-aminopropyl) triethoxysilane (APTES) was investigated. The magnetite MnFe2O4 nanoparticles with an average size of ~33 nm were synthesized through a simple co-precipitation method followed by coating with silica shell using tetraethoxysilane (TEOS); that has resulted in a high density of hydroxyl groups loaded on nanoparticles. The prepared MnFe2O4@SiO2 nanoparticles were further functionalized with APTES via silanization reaction. For having suitable surface coverage of APTES, controlled hydrodynamic size of nanoparticles with a high density of amine groups on the outer surface, the APTES silanization reaction was investigated under different reaction temperatures and reaction times. Based on dynamic light scattering (DLS) and zeta potential results, the best conditions for the formation of APTES-functionalized MnFe2O4@SiO2 nanoparticles were defined at a reaction temperature of 70 °C and the reaction time of 90 min. The effectiveness of our surface modification was established by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). The prepared magnetite nanostructure can be utilized as precursors for synthesizing multilayered core-shell nanocomposite particles for numerous applications such as medical diagnostics, drug, and enzyme immobilization, as well as molecular and cell separation.
Mohammed Ruhul Amin Bhuiyan, Hayati Mamur,
Volume 18, Issue 3 (9-2021)
Abstract

Carbon-based chemical substances persistence can contribute to adverse health impacts on human lives. It is essential to overcome for treatment purposes. The semiconducting metal oxide is Zinc Oxide (ZnO), which has excellent biocompatibility, good chemical stability, selectivity, sensitivity, non-toxicity, and fast electron transfer characteristics. The ZnO nanoparticles are more efficient compared to other metal oxide materials. Thus, the nanoparticles are in the present research situation to receive increasing attention due to their potential performance of the human body to feel comfortable. The nanoparticles become more promising for biomedical applications through the development of anticancer agents to recovery different types of malignant cells in the human body. The ZnO nanoparticles can be the future potential materials for biomedical applications. The purpose of this paper is to review the cost-effective approach to synthesize the ZnO nanoparticles. Moreover, these ideas can develop for synthesized ZnO biomaterial to perform easily up-scaled in biomedical applications.
Tashi Tenzin, Amrinder Kaur,
Volume 19, Issue 2 (6-2022)
Abstract

Green synthesis refers to the synthesis of nanoparticles using plants and microorganisms. It is preferred over conventional methods as its sustainable, eco-friendly, cost effective and rapid method. The phytochemicals and enzymes present in plants and microorganisms respectively acts as the reducing and capping agent for the synthesis of nanoparticles. Phytochemicals and enzymes have the ability to reduce precursor metal ions into nanoparticles. As the conventional methods involve the use of high energy and toxic chemicals which are harmful to both environment and organisms, these synthesis methods are discouraged. Of the nanoparticles, gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have gained lots of attention owing to their multiple applications and less toxicity. In addition, various in-vitro studies have reported the antimicrobial activity of AgNPs and AuNPs against various microbes. This particular review portrays the methods of nanoparticles synthesis, components of green synthesis, mechanism of green synthesis, antimicrobial activity, other applications and various factors affecting the green synthesis of AgNPs and AuNPs.
Fiza Ur Rehman, Syeda Sohaila Naz, Muhammad Junaid Dar, Annum Malik, Maimoona Qindeel, Francesco Baino, Fazli Wahid, Abbas Rahdar, Saeeda Munir, Sara Qaisar, Kifayat Ullah Shah, Mahtab Razlansari,
Volume 19, Issue 2 (6-2022)
Abstract

Neoplastic cells have co-opted inflammatory receptors and signaling molecules that potentiate inflammation. Activated inflammatory pathways lead to neo-angiogenesis, lymph-angiogenesis, immunosuppression, tumor growth, proliferation and metastasis. This cancer-sustaining inflammation is a critical target to arrest cancer growth. Multiple drug resistance, high cost, low oral bioavailability and serious side effects have rendered conventional cytotoxic chemotherapeutics less impressive. The aim of this research was to achieve cancer debulking and proliferation prevention by limiting ‘cancer-sustaining’ tumor niche inflammation through non-conventional oral approach employing anti-inflammatory agents and avoiding conventional cytotoxic agents. Synergistic anti-inflammatory agents, i.e. celecoxib as selective COX-2 inhibitor and montelukast as cysteinyl leukotriene receptor antagonist, were selected. Silver nanoparticles (AgNPs) were used as nanocarriers because of their efficient synergistic anti-neoplastic effects and excellent oral drug delivery potential. Specifically, selected drugs were co-conjugated onto AgNPs. Synthesized nanoparticles were then surface-modified with poly(vinyl alcohol) to control particle size, avoid opsonization/preferred cellular uptake and improve dispersion. Surface plasmon resonance analysis, particle size analysis, DSC, TGA, XRD, FTIR and LIBS analysis confirmed the successful conjugation of drugs and efficient polymer coating with high loading efficiency. In-vitro, the nanoparticles manifested best and sustained release in moderately acidic (pH 4.5) milieu enabling passive tumor targeting potential. In-vivo, synthesized nanoparticles exhibited efficient dose-dependent anti-inflammatory activity reducing the dose up to 25-fold. The formulation also manifested hemo-compatibility, potent anti-denaturation activity and dose-dependent in-vitro and in-vivo anti-cancer potential against MCF-7 breast cancer and Hep-G2 liver cancer cell lines in both orthotopic and subcutaneous xenograft cancer models. The anti-inflammatory nanoparticles manifested tumor specific release potential exhibiting selective cytotoxicity at cancerous milieu with slightly acidic environment and activated inflammatory pathways. The formulation displayed impressive oral bioavailability, sustained release, negligible cytotoxicity against THLE-2 normal human hepatocytes, low toxicity (high LD50) and wide therapeutic window. Results suggest promise of developed nanomaterials as hemo-compatible, potent, cheaper, less-toxic oral anti-inflammatory and non-conventional anti-cancer agents.
Pooyan Soroori, Saeid Baghshahi, Arghavan Kazemi, Nastaran Riahi Noori, Saba Payrazm, Amirtaymour Aliabadizadeh,
Volume 19, Issue 3 (9-2022)
Abstract

The goal of the present study is to prepare a room temperature cured hydrophobic and self-cleaning nano-coating for power line insulators. As a result, the installed insulators operating in power lines can be coated without being removed from the circuit and without the need to cut off power. For this purpose, hydrophobic silica nanoparticles were synthesized by sol-gel method using TEOS and HMDS. The synthesized hydrophobic silica nanoparticles were characterized by XRD, FTIR, SEM, and TEM analyses to investigate phase formation, particle size, and morphology. Then the surface of the insulator was cleaned and sprayed by Ultimeg binder solution, an air-dried insulating coating, as the base coating. Then the hydrophobic nano-silica powder was sprayed on the binder coated surface and left to be air-cured at room temperature. After drying the coating, the contact angle was measured to be 149o. Pull-off test was used to check the adhesion strength of the hydrophobic coating to the base insulator. To evaluate the effect of environmental factors, UV resistance and fog-salt corrosion tests were conducted. The results showed that 150 hours of UV radiation, equivalent to 9 months of placing the samples in normal conditions, did not have any significant effect on reducing the hydrophobicity of the applied coatings.

Page 1 from 2    
First
Previous
1
 

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb