Search published articles


Showing 3 results for Optical Properties.

F. Sousani, R. Mozafarinia, A. Eshaghi, H. Jamali,
Volume 15, Issue 1 (3-2018)
Abstract

In this research, Germanium-carbon coatings were deposited on ZnS substrates by plasma enhanced chemical vapor deposition (PECVD) using GeH4 and CH4 precursors. Optical parameters of the Ge1-xCx coating such as refractive index, Absorption coefficient, extinction coefficient and band gap were measured by the Swanepoel method based on the transmittance spectrum. The results showed that the refractive index of the Ge1−xCx coatings at the band of 2 to 2.2 µm decreased from 3.767 to 3.715 and the optical gap increased from 0.66 to 0.72 eV as CH4:GeH4 increases from 10:1 to 20:1.

M. Minbashi, R. Zarei Moghadam, M. H. Ehsani, H. Rezagholipour Dizaji, M. Omrani,
Volume 16, Issue 3 (9-2019)
Abstract

Zigzag ZnS thin films prepared by thermal evaporation method using glancing angle deposition (GLAD) technique. ZnS films with zigzag structure were produced at deposition angles of 0˚, 60˚ and 80˚ at room temperature on glass substrates. Surface morphology of the films w::as char::acterized by using field emission scanning electron microscopy (FESEM). The optical properties of the specimens were investigated by using UV-Vis spectroscopy technique. To characterize the porosity of the simulated structures, the PoreSTAT software which analyses the NASCAM software was employed. The optical transmissions of the samples were calculated by using NASCAM optics package. The simulation results are completely in agreement with the experimental results.
 

Samrat Mane,
Volume 21, Issue 1 (3-2024)
Abstract

In this research work, Cadmium Sulphide thin film deposited on to glass substrate in a non-aqueous medium at 80°C. The various physical preparative parameters and the deposition conditions, such as the deposition time and temperature, concentrations of the chemical species, pH, speed of mechanical stirring, etc., were optimized to yield good quality films. The as-prepared sample is tightly adherent to the substrate's support, less smooth, diffusely reflecting and was analyzed for composition. The synthesized film is characterized using X- ray diffraction (XRD), electrical and optical properties. It appears that the composites are rich in Cd. The grown CdS thin film had an orange-red color. A band gap of CdS thin film is 2.41 eV.  The average crystallite size of the CdS film was 21.50 nm. The resistivity of the CdS thin film is about 5.212 x 105 W cm.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb