Search published articles


Showing 5 results for Polymers

F. Foroutan, J. Javadpou, A. Khavandi, M. Atai, H. R. Rezaie,
Volume 8, Issue 2 (6-2011)
Abstract

Abstract: Composite specimens were prepared by dispersion of various amounts of nano-sized Al2O3 fillers in a monomer system containing 60% Bis-GMA and 40% TEGDMA. For comparative purposes, composite samples containing micrometer size Al2O3 fillers were also prepared following the same procedure. The mechanical properties of the light- cured samples were assessed by three-point flexural strength, diametral tensile strength, and microhardness tests. The results indicated a more than hundred percent increase in the flexural strength and nearly an eighty percent increase in the diametral tensile strength values in the samples containing nano-size Al2O3 filler particles. It is interesting to note that, this improvement was observed at a much lower nano-size filler content. Fracture surfaces analyzed by scanning electron microscopy, indicated a brittle type of fracture in both sets of specimens.
M. Abbasalizadeh, R. Hasanzadeh, Z. Mohamadian, T. Azdast, M. Rostami,
Volume 15, Issue 4 (12-2018)
Abstract

Shrinkage is one of the most important defects of injection molded plastic parts. Injection molding processing parameters have a significant effect on shrinkage of the produced parts. In the present study, the effect of different injection parameters on volumetric shrinkage of two polymers (high-density polyethylene (HDPE) semi-crystalline thermoplastics and polycarbonate (PC) as a representative of amorphous thermoplastics) was studied. Samples under different processing conditions according to a L27 orthogonal array of Taguchi experimental design approach were injected. Effect of material crystallinity on the shrinkage of injected samples was investigated. Obtained results revealed that semi-crystalline thermoplastics have larger shrinkage values in comparison with amorphous thermoplastics. Shrinkages of injected samples were also studied along and across the flow directions. Results showed that the flow path can dramatically affect the shrinkage of semi-crystalline thermoplastics. However for amorphous thermoplastics, results showed an independency of obtained shrinkage to flow direction. Analysis of variance (ANOVA) results illustrated that cooling time was the most effective parameter on shrinkage for both PE and PC injected samples; followed by injection temperature as the second important parameter. The optimum conditions to minimize shrinkage of injection molded samples are also achieved using signal to noise ratio (S/N) analysis.
O. Kaliuzhnyi, V. Platkov,
Volume 17, Issue 2 (6-2020)
Abstract

A method has been advanced to form porous poly(tetrafluoroethylene) (PTFE) using a partially gasified porogen. Sodium hydrogen carbonate (NaHCO3) was selected as a porogen. The standard technology of porous materials production including mixing, pressing, thermal treatment, porogen leaching and drying was employed.The formation of porous PTFE structures was investigated in a wide range of NaHCO3 concentrations. The mechanism for formation of such structures has been proposed. It is shown that the NaHCO3 porogen affords permeable porous structures with porosities down to 50% (cf. the lowest bound porosity of 70% attainable with the standard NaCl porogen).The flow rate characteristics of the pressure difference as a function of the air flow rate have been measured on porous PTFE samples formed using the partially gasified NaHCO3 porogen and the NaCl porogen. The obtained flow rate characteristics were linear, which suggests a laminar air flow in the pores. The permeability of the porous PTFE structures formed using the above porogens has been estimated.The use of the NaHCO3 porogen has allowed a five-fold cut of the leaching time, a more than three times enhancement of the permeability of the porous structures and an increase in the hydraulic pore diameter by a factor of 1.8 as compared to the corresponding data obtained with the NaCl porogen.

A. Nogueira, S. de Barros, L. Alves,
Volume 17, Issue 3 (9-2020)
Abstract

The construction sector is responsible for relevant environmental impacts and one of its most crucial points is the use of concrete. Geopolymers represent the most promising green and ecological alternative for common Portland cement and cementitious materials, due to its proven durability, mechanical and thermal properties. This work presents an experimental and comparative study of adhesion at the fiber-matrix interface between glass fibers and carbon fibers added to the geopolymer matrix. This analysis was performed by pull-out test, whereby it was found that the greatest efficiency was obtained by reinforcing with the glass fibers, incorporated at 2 mm in the geopolymer matrix. As results, the adhesion between the fibers and the geopolymer structure can be assessed, as well as the optimum length of application.
Ekaterina Dmitrieva, Ivan Korchunov, Ekaterina Potapova, Sergey Sivkov, Alexander Morozov,
Volume 19, Issue 4 (12-2022)
Abstract

The article discusses the effect of calcined clays on the properties of Portland cement. An optimal method for calcining clays is proposed, which makes it possible to reduce the proportion of Portland cement clinker in cement to 60% and increase the strength characteristics from 55 MPa to 79 MPa. The study of the composition and structure of clays made it possible to select the optimal heat treatment parameters, at which the calcination products are characterized by the highest pozzolanic activity. It is shown that the use of alkali-activated calcined clays significantly increases the strength and durability of hardened cement binders compared to the composition without additives. In addition, calcined clays increase the frost resistance of cement in a 5% NaCl solution. The obtained experimental data are confirmed by thermodynamic calculations and the results of scanning electron microscopy.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb