S. Zavareh, F. Majedi,, M. Sh. Sharif, F. Golestanifard,
Volume 6, Issue 3 (9-2009)
Abstract
Abstract: Multiwalled carbon nanotubes (MWCNTs) were coated with MgO nano particles using simple precipitationmethod. The growth of Mg(OH)2particles was controlled by adjusting the alkaline concentration, salt concentrationand feed rate in simple precipitation method. The nanometer-sized Mg(OH)2particles were precipitated on the surfaceof functionalized MWCNTs by reaction between MgSO4 solution and NH4OH. The samples have been characterizedby scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction and thermal gravimetricanalysis. The results showed a nominally complete MgO coating over the entire outer surface of MWCNTs resulting inimprovement of their oxidation durability.
Chimmachandiran Suresh Kumar, Kaliyan Dhanaraj, Ramasamy Mariappan Vimalathithan, Perumal Ilaiyaraja, Govindhasamy Suresh,
Volume 18, Issue 1 (3-2021)
Abstract
The Nano Hydroxyapatite (HAp), HAp/PEG and HAp/PVP powders derived from both Gastropod shell (natural source) and chemical precursor by the precipitation method were characterized through various characterization techniques such as FT-IR, XRD, SEM-EDX, TEM, Antibacterial activity and SBF analysis. Based on the structural, chemical, morphological and biological characteristics, HAp/PVP from natural and chemical precursors have been compared successfully. Calculated structural parameters, crystallinity index, C/P ratio, morphology, antibacterial activity and SBF analysis of the products show that HAp/PVP-S (derived from a natural source) exhibits good mechanical property, rod like morphology, good antibacterial activity and apatite formation ability at 14 days. EDX analysis also shows the presence of carbon and sodium in HAp/PVP-S. Comparative analysis reveals that characteristics of HAp/PVP-S such as high carbonate content, low crystallite size, poor crystalline nature, presence of trace metal, non-stoichiometric elemental composition and rod like crystals which are matched with the characteristics of biological apatite. Thus, the HAp/PVP-S has the ability to form bone apatite.
Usha Vengatakrishnan, Kalyanaraman Subramanian, Vettumperumal Rajapand, Dhineshbabu Nattanmai Raman,
Volume 18, Issue 3 (9-2021)
Abstract
Copper oxide (CuO) nanostructure particles were prepared using KOH/NaOH catalyst by low cost precipitation method and characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and energy dispersive X-ray spectra (EDX) analysis. The photocatalytic dye degradation study of pure CuO nanostructure particles are analysed against two azo dyes (Direct black 38 (Black-E) and Congo red) under ultraviolet (UV) and solar irradiation. The release of major active species (*OH) in the photocatalytic degradation by as prepared CuO nanostructure particles were investigated by photoluminescence (PL) spectra with two different excitation wavelength (325and 355nm). The band gap of CuO nanostructure particles was calculated from diffuse reflectance spectra. The photocatalytic effect of CuO nanostructure particles is confirmed from the UV – Vis and photoluminescence spectra and also, further confirmed from the kinetic studies under UV and solar radiations. The photocatalytic degradation results revealed that 16.35% and 7.5% of black E and Congo red dye was degraded under UV, while it was 47.2% and 17.6% under solar light. The influence of pH on the photodegradation and change in the reaction temperature under solar irradiation were also analysed