Search published articles


Showing 2 results for Thermal Analysis.

M. Ardestani,, H. Razavizadeh,, H. Arabi, H. R. Rezaie,
Volume 6, Issue 2 (6-2009)
Abstract

Abstract:

materials can be fabricated by sintering of W-Cu composite powders. In this research W-20%wt Cu composite powders

was synthesized via a co-precipitation method. Precipitate obtained from a mixture of copper nitrate and ammonium

paratungstate (APT) in distilled water contained W-Cu compounds. This precipitate was washed, dried and calcined

at 550

of dried precipitate powder was determined by thermogravimetry (TG), differential thermal analysis (DTA) and X-ray

diffraction (XRD). The sintering of the reduced powders was investigated as a function of temperature. Relative density

of more than 98% obtained for the powders sintered at 1200

close to theoretical calculations. The hardness of the sintered powders was 320 Vickers.

W-Cu composites are widely used as contacts, heat sinks and electro discharge electrodes. These kinds of°C in air and then reduced in H2 atmosphere in order to convert to W-Cu powders. The calcination temperature°C . The corresponding electrical conductivity was too

Ferda Mindivan,
Volume 21, Issue 4 (12-2024)
Abstract

Natural-reinforced hybrid composites, called "eco-materials," are becoming increasingly important for protecting the environment and eliminating waste problems. In this study, hybrid biocomposites were produced by the colloidal mixing method using seashell (SS) as natural waste, two graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)) as filler material, and polyvinyl chloride (PVC) as the polymer matrix. The crystallization and mechanical properties of hybrid biocomposites were examined based on their thermal properties using TGA and DSC analysis. In comparison to PVC/GO and PVC/RGO composites with identical weight percentages of GO and RGO, the PVC/GO composite exhibited superior thermal stability and crystallinity, resulting in elevated hardness values for the same composite. These results were attributed to the better interaction of GO with PVC due to the higher number of oxygen-containing functional groups in GO than in RGO. However, the PVC/RGO/SS hybrid biocomposites exhibited superior properties than PVC/GO/SS hybrid biocomposites. The greatest crystallinity values were 39.40% for PVC/RGO/SS-20 compared to PVC/RGO at 20 wt% SS content and 29.21% for PVC/GO/SS-20 compared to PVC/GO. The PVC/RGO/SS-20 hybrid biocomposite showed the greatest gain in hardness value, up 18.47% compared to the PVC/RGO composite. No significant change was observed in the melting and weight loss temperatures as the SS content increased; however, the crystallinity and glass transition temperatures in hybrid biocomposites increased as the SS content increased. All analysis results demonstrated the achievement of SS-graphene-PVC interactions, suggesting that SS waste could enhance the thermal and mechanical properties of composite production.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb