Search published articles


Showing 5 results for Vof

Babaei R., Varahram N., Davami P., Sabzevarzadeh A.,
Volume 1, Issue 2 (6-2004)
Abstract

In this investigation, α 2-D Finite Volume Method (FVM) with unstructured triangular mesh is developed to simulate the mould filling process. The simulation of fluid flow and track of free surface is based on the Marker And Cell (MAC) technique. This technique has capability ofhandling the arbitrary curved solid boundaries in the casting processes. In order to verify the computational results of the simulation, a thin disk plate with transparent mould was tested. The mould filling process was recorded using a 16mm high-speed camera. Images were analyzed frame by frame, in order to tracking of free surface and filling rate during mould filling. Comparison between the experimental method and the simulation results has shown a good agreement.
Mirbagheri S.m.h., Ashouri H., Varahram N., Davami P.,
Volume 1, Issue 2 (6-2004)
Abstract

In this investigation a new model was developed to calculate gas pressure at the melt/foam interface (Gap) resulting from foam degradation during mould filling in the Lost Foam Casting (LFC) process. Different aspects of the process, such as foam degradation, gas elimination, transient mass, heat transfer, and permeability of the refractory coating were incorporated into this model. A Computational Fluid Dynamic (CFD) code was developed based on the numerical technique of the SOLution Algorithm- Volume Of Fluid (SOLA- VOF) utilizing model, for the simulation and prediction of the fluid flow in the LFC process. In order to verify the computational results of the simulation, a thin plate of gray iron was poured into a transparentfoam mould. The mould filling process was recorded using a 16mm high-speed camera. Images were analysed frame by frame, in order to measuring foam depolymerization rate and the gap volume during mould filling. Comparison between the experimental method and the simulation results, for the LFC filling sequence, has shown a good agreement.
N. Hatami,, R. Babaei, P. Davami,
Volume 5, Issue 2 (6-2008)
Abstract

Abstract: In this study an algorithm for mold-filling simulation with consideration of surface tension has been developed based on a SOLA VOF scheme. As the governing equations, the Navier-Stokes equations for incompressible and laminar flows were used. We proposed a way of considering surface tension in mold-filling simulation. The proposed scheme for surface tension was based on the continuum surface force (CSF) model we could confirm the remarkable effectiveness of the surface tension by experiment which concluded in very positive outcome.
J. Saaedi, H. Arabi, Sh. Mirdamadi, Th. W. Coyle,
Volume 5, Issue 4 (12-2008)
Abstract

Abstract: Two different coating microstructures of Ni-50Cr alloy were obtained on a stainless steel substrate by changing combustion characteristics of a high velocity oxy-fuel (HVOF) process and the size distribution of feed powder during coating process. Use of the finer feed powder and leaner fuel in oxygen/fuel ratio (i.e. using a ratio much less than stoichiometric ratio) led to formation of an extremely dense coating with high oxide content. Heat treating of this coating at 650ºC for 4 hours caused the formation of an intermetallic sigma phase having Cr7Ni3 stoichiometry. Formation of this phase has been reported occasionally in thin films not in thermal spray coatings, as reported for the first time in this research. In addition no sigma phase was detected in the HVOF as-deposited coating with low oxide content after heat treatment of the samples. Therefore, due to the limited number of papers available in the subject of formation of phase in either Ni-Cr bulk alloys or coatings, it is considered appropriate to show up a case in this field. In this work, the formation of sigma phase in Ni-50Cr coating deposited by HVOF technique and heat treated at 650ºC was discussed and then the coating was characterized.
Jashanpreet Singh, Rana Gill, Satish Kumar, S.k. Mohapatra,
Volume 19, Issue 4 (12-2022)
Abstract

In this paper, an investigation was carried out to test the suitability of potential additive materials in
WOKA 3533 (WC-10Co4Cr) cermet HVOF coating subjected to slurry erosion in ash conditions. The additives
namely molybdenum carbide, yttrium oxide, and zirconium oxide were added in equal percentages (3 wt.%) in
WOKA cermet powder. High-velocity oxy-fuel (HVOF) spraying was performed to develop the additive-based
WOKA cermet coatings. The slurry erosion in ash conditions was tested using the pot tester. Microstructural and
mechanical properties of traditional and additive-based WOKA cermet coatings were also tested in the present
study; for example, microstructure, crystalline phases of as-sprayed coatings, and microhardness. Results present a
comparison of surface erosion wear of different cermet coatings. It was found that the yttrium oxide was a suitable
additive for the WOKA cermet coatings than the molybdenum carbide. However, zirconium oxide is unsuitable for
WOKA cermet coatings in erosion wear applications.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb