Search published articles


Showing 4 results for Electrical Properties

A. Nemati, K. Pourazarang,
Volume 5, Issue 3 (9-2008)
Abstract

Abstract: The PZT-based ceramics with a composition of Pb1.1-xLax (Zr0.53Ti0.47)O3, were prepared by conventional mixed oxide followed by mechanical alloying and sol-gel methods in which x was chosen in the range of 0.02–0.06. The samples were calcined in the range of 450 °C - 750 °C for 4h. The physical and electrical properties of the samples were determined as a function of the calcination temperature. The obtained data from two methods were compared with conventional mixed oxide method. Microstructural and compositional analyses of the samples were carried out using XRD and SEM. Dielectric properties of the samples were measured with an impedance analyzer. The ferroelectric properties of the PZT and PLZT samples were measured using the frequencies applying equipment and d33 tester. The results indicated a complete tetragonal phase prepared from both methods. It was shown that the addition of La and reduction in calcination temperature improved both the dielectric and piezoelectric properties. The dielectric constant tended to increase with doping content, giving the maximum value of about 2000 at 3 mol% La3+. In addition, the mechanical coupling factor (Qm) of the doped samples showed a significant decrease. Finally, the value of planar coupling factor (kp) reached the maximum value of 0.47 at 1 mol% La3+.
H. Darrudi, M. Adelifard,
Volume 16, Issue 1 (3-2019)
Abstract

In this paper we have investigated the physical properties of reduced graphene oxide (RGO) thin films prepared at various substrate temperatures of 230, 260, 290, 320 and 350 oC using spray pyrolysis technique. We have compared these films from various viewpoints, including structural, morphological, optical, electrical and thermos-electrical properties. XRD analysis showed a phase shift from graphene oxide (GO) to RGO due to elevate the substrate temperature from 200 oC to higher temperatures. FESEM images of RGO thin films reveal that a stacked image of irregular and folding nanosheets, and rod-like features at temperatures below and above 290 oC; respectively. Optical studies showed that the layers have a relatively high absorption coefficient (∼0.8×104 to 1.7×104 cm−1) in the visible range, with an optical band gap of 1.67–1.88 eV. The Hall effect data showed that all samples have a p-type conductivity with a hole concentration of ∼1015 cm−3, and sheet resistance values of about 106 Ω/sq, in agreement with previous reports. The thermoelectric measurements revealed that with increasing applied temperature gradient between the two ends of the samples, the thermoelectric electromotive force (emf) of the prepared RGO thin films increases.
Hettal Souheila, Ouahab Abdelouahab, Rahmane Saad, Benmessaoud Ouarda, Kater Aicha, Sayad Mostefa,
Volume 19, Issue 1 (3-2022)
Abstract

Copper oxide thin layers were elaborated using the sol-gel dip-coating. The thickness effect on morphological, structural, optical and electrical properties was studied. Copper chloride dihydrate was used as precursor and dissolved into methanol. The scanning electron microscopy analysis results showed that there is continuity in formation of the clusters and the nuclei with the increase of number of the dips. X-ray diffractogram showed that all the films are polycrystalline cupric oxide CuO phase with monoclinic structure with grain size in the range of 30.72 - 26.58 nm. The obtained films are clear blackin appearance, which are confirmed by the optical transmittance spectra. The optical band gap energies of the deposited films vary from 3.80 to 3.70 eV. The electrical conductivity of the films decreases from 1.90.10-2 to 7.39.10-3 (Ω.cm)-1
Sonali Wagh, Umesh Tupe, Anil Patil, Arun Patil,
Volume 19, Issue 4 (12-2022)
Abstract

Temperature is one of the key factor that affecting the electrical, physical, structural, and morphological properties as well as the crystallinity of the nanomaterials. The current study investigates the effect of annealing temperature on the structural and electrical properties of lanthanum oxide (La2O3) thick films. La2O3 thick films were prepared on a glass substrate using a conventional screen printing technique. In this work, T1 is an unannealed prepared film, whereas T2 and T3 are annealed in a muffle furnace for 3 hours at 350°C and 450°C, respectively. XRD technique was exploited to investigate the crystallization behavior of the films. It was found that the crystal structure of La2O3 thick films are pure hexagonal phase. The annealing temperatures were revealed to have influence on the crystallite sizes of the films. SEM and EDS was used to study the morphology and elemental analysis of the films respectively. The electrical properties of the films were explored by measuring resistivity, temperature coefficient of resistivity (TCR), and activation energy at lower and higher temperatures regions. The film annealed at 450°C has high resistivity, a high TCR, and small crystallite size. The thickness of the La2O3 thick films was also found to decrease as the annealing temperature increased.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb