Search published articles


Showing 10 results for Magnesium

A. Shahcheraghi, F. Dehghani, K. Raeissi, A. Saatchi, M. H. Enayati,
Volume 10, Issue 1 (3-2013)
Abstract

Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initial discharge capacity and exchange current density of hydrogen are increased by adding 5wt% TiO2, while the cycle stability and bulk hydrogen diffusivity don’t change. It is found that the charge transfer resistance of Mg2Ni–5wt% TiO2 composite is lower than that of Mg2Ni alloy. On the other hand, the hydrogen oxidation during the discharge process proceeds more easily on the electrode surface containing TiO2 additive.
M. Maddah, M. Rajabi, S. M. Rabiee,
Volume 12, Issue 4 (12-2015)
Abstract

In this study, the composite material with composition of MgH2-5 wt% SiC has been prepared by co-milling of MgH2 with SiC powder. The effect of milling time and additive on MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area, and also hydrogen desorption properties of obtained composite was evaluated by thermal analyzer method and compared with pure un-milled MgH2. The phase constituents and grain size of powder were characterized by X-ray diffractometry method. It has been shown that addition of 5 wt% SiC to MgH2 and mechanical alloying up to 30 h formed a nanocrystalline composite with the average crystallite size of 12 nm, average particle size of 0.5 µm and specific surface area of 10 m2/g. On the other hand, SiC can help to break up particles and reduce the particle size. As a consequence, the desorption temperature of composite material milled for 30 h has decreased from 435 °C to 361 °C.


P. Amin, A. Nourbakhsh, P. Asgarian, R. Ebrahimi Kahrizsangi,
Volume 13, Issue 3 (9-2016)
Abstract

In this study, Boron carbide was synthesized using Mesoporous Carbon CMK-1, Boron oxide, and magnesiothermic reduction process. The Effects of temperature and magnesium grain size on the formation of boron carbide were studied using nano composite precurser containg mesoporous carbon. Samples were leached in 2M Hydrochloric acid to separate Mg, MgO and magnesium-borat phases. SEM, XRD and Xray map analysis were caried out on the leached samples to characterize the  boron carbide. results showed that the reaction efficiency developed in samples with weight ratio of B2O3:C:Mg = 11:1.5:12, by increasing the temperature from 550 to 650 °C and magnesium powder size from 0.3 m to 3 m.


. S. Khani, . M. T. Salehi, . H. R. Samim, Prof. M. R. Aboutalebi, . H. Palkowski,
Volume 13, Issue 3 (9-2016)
Abstract

The evolution of microstructure and mechanical properties of a magnesium cast alloy (AZ31) processed by equal channel angular pressing (ECAP) at two different temperatures were investigated. The as-cast alloy with an average grain size of 360  was significantly refined to about 5  after four ECAP passes at 543 K. Grain refinement was achieved through dynamic recrystallization (DRX) during the ECAP process in which the formation of necklace-type structure and bulging of original grain boundaries would be the main mechanisms. ECAP processing at lower temperature resulted in finer recrystallized grains and also a more homogenous microstructure. The mechanical behavior was investigated at room temperature by tensile tests. The obtained results showed that the ECAP processing can basically improve both strength and ductility of the cast alloy. However, the lower working temperature led to higher yield and ultimate strength of the alloy.


M. Hoghooghi, O. Jafari, S. Amani, G. Faraji, K. Abrinia,
Volume 16, Issue 4 (12-2019)
Abstract

Spread extrusion is a capable method to produce different samples with a wider cross-section from the smaller billets in a single processing pass. In this study, dish-shaped samples are successfully produced from the as-cast cylindrical AM60 magnesium alloy at 300 °C, the mechanical properties and microstructural changes of the final specimens are precisely evaluated. Due to the high amount of plastic strain, which is applied to the initial billet during the material flow in the expansion process, grain refinement occurred as a result of recrystallization and subsequently good mechanical properties achieved. Therefore, mean grain size reduced from 160 µm to 14 µm and initial equiaxed grains changed to the elongated ones surrounded by fine grains. Also, microhardness measurements indicate that hardness increased from 51 Hv to 70 Hv. Some fluctuations were also observed in the hardness profile of the sample which was mainly related to the bimodal structure of the final microstructure. Good mechanical properties, fine microstructure, and also the ability to produce samples with higher cross-section make the spread extrusion process a promising type of extrusion.
M. Palizdar, Z. Aslam, R. Aghababazadeh, A. Mirhabibi, P. Sangpour, Z. Abadi, Y. Palizdar, R. Brydson,
Volume 16, Issue 4 (12-2019)
Abstract

In this paper the chemical interaction between catalyst and support has been studied to understand the observed different growth rate of CNTs in our previous paper. Both pure MgO and Mg(NO3)2 . 6H2O as sources of the MgO catalyst support and Fe2(SO4)3 · xH2O as the source of the Fe catalyst, were employed. A Fe catalyst supported on MgO has been synthesized using the wet impregnation method followed by calcination. To compare the catalyst grain size and its distribution, the sample were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and BET specific surface area (SSA) measurement and X-ray photoelectron spectroscopy (XPS). XPS technique have utilized complementary to demonstrate the existence of chemical interaction between MgO support and Fe catalyst. Results revealed that the type of precursor used to prepare the support has a significant influence on the morphology of the support and the associated distribution of the Fe catalysts. The highest yield of MgFe2O4 phase was obtained using a pure MgO precursor which after calcination results in a homogenous distribution of nano-sized Fe particles over the support surface
Gholam Hussein Borhani, Saeed Reza Bakhshi, Sadegh Soltani,
Volume 18, Issue 2 (6-2021)
Abstract

In this study, Ta powder was produced from Ta scarp via chemical processes using Mg and Ca powders. At first, Tantalum scraps were converted to Tantalum oxide (Ta2O5) at 1100˚C in an oxygen atmosphere. Tantalum oxide was reduced to Tantalum powder with Mg in a vacuum environment at 950 to 1200˚C for 3 hours. The obtained Ta powders further were reacted with Ca at 950˚C for 5 hours in a vacuum atmosphere. The powders were analyzed through X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), as well as oxygen measurement. The results show that the average particles size of the produced Ta powders is about 58 nm with oxygen contents of 250 ppm.
Amir Mostafapour, Milad Mohammadi, Ali Ebrahimpour,
Volume 18, Issue 2 (6-2021)
Abstract

A full factorial design of experiment was applied running 36 experiments to investigate the effects of milling parameters including cutting speed with three levels of 62.83, 94.24 and 125.66 m/min, feed rate with three levels of 0.1, 0.2 and 0.3 mm/tooth, cutting depth with two levels of 0.5 and 1 mm and machining media with two levels, on surface integration properties of magnesium AZ91C alloy such as grain size, secondary phase percent, surface microhardness and surface roughness. In all cases, a fine grained surface with higher secondary phase sediment and microhardness obtained comparing the raw material. According to analysis of variance results, the most effective parameter on grain size, secondary phase percent and microhardness was cutting depth and the most effective parameter on surface roughness was feed rate. although the grain size in all machined samples was smaller than that of the raw material but due to the dual effect of cryogenic conditions, which both cool and lubricate and reduce the temperature and strain rate at the same time, the direct effect of this parameter on grain size was not significant. Also, the all interaction effects of parameters on grain size and microhardness were significant.
Ata Abdi, Mehrdad Aghaie-Khafri,
Volume 19, Issue 1 (3-2022)
Abstract

Hot Workability and Processing Map of High Gd Content Mg-Gd-Zn-Zr-Nd Alloy Hot deformation behavior of homogenized Mg-4Sn binary alloy was studied using compression tests at the temperature range of 300-500  and strain rates of 0.001-1s-1. The material showed typical single peak flow behavior followed by a steady state flow as a plateau, which is more evident at the high value of Zener-Hollomon parameter. Constitutive analysis showed that in spite of the original Johnson-Cook (J-C), conventional strain compensated Arrhenius model based on Sellars-McTegart model has a reasonable agreement with the experimental data. Moreover, the well-known hyperbolic sine function fits the experimental data for predicting of the peak stress with a fair degree of accuracy.
Faraz Hussain, Muhammad Umar Manzoor, Muhammad Kamran, Tahir Ahmad, Fahad Riaz, Sehrish Mukhtar, Hafiz Muhammad Rehan Tariq, Muhammad Ishtiaq,
Volume 21, Issue 3 (9-2024)
Abstract

Magnesium alloys are increasingly valued for biomedical applications due to their biocompatibility. This study investigates Mg-AZ31B alloy samples treated with quartz and alumina grits (<200 μm) at varied pressures, followed by anodization in an eco-friendly alkaline electrolyte. The results show that increased blasting pressure produces a rougher surface. Anodization time significantly affects the thickness of the anodic film, leading to a transition in surface morphology from fine to coarse structures with complete film coverage. Characterization by XRD reveals that the anodic film mainly comprises magnesium oxide and hydroxide phases. Open Circuit Potential (OCP) measurements demonstrate enhanced corrosion resistance post-anodization, particularly notable at 40 minutes on alumina-blasted samples. ANOVA confirms that both blasting pressure and anodization time significantly influence coating thickness and OCP, indicating the formation of a dense anodized layer.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb