Showing 2 results for Superhydrophobic
S. M. Alduwaib, Muhannad M. Abd, Israa Mudher Hassan,
Volume 19, Issue 3 (9-2022)
Abstract
Background: Superhydrophobic materials which have contact angle higher than 150°, considering their widespread applications, are very important for researchers.
Method: In this research, silica nanopowder was synthesized successfully using inexpensive sodium silicate source and very simple and facile method. Synthesis of hydrophobic solution was carried out by sol-gel method. The surface modification of silica nanopowder was performed using different silane/siloxane polymers and was deposited on glass slides. For characterization of the samples XRD, FESEM, EDX, TEM, FTIR, and Raman analysis were used.
Results: The XRD result shows a very wide peak at 2q = 24.7° which indicates the amorphous nature of the silica particles. The results of the performed characteristics confirm the synthesis of silica nanopowder with the size of less than 25 nm. The EDX spectrum shows that only Si and O elements are present in the structure and no impurities are visible. The contact angle between water droplet and thin films was measured and the effect of different synthesis parameters on the contact angle was studied. Among the studied polymers and solvents, the most hydrophobicity was obtained using TMCS polymer and xylene solvent. The optimized sample has a maximum contact angle of 150.8°.
Conclusion: The synthesized thin films have superhydrophobic properties and the method used in this research can be developed for use in industrial applications.
Amirreza Sazvar, Seyed Mohammad Saeed Alavi, Hossein Sarpoolaky,
Volume 20, Issue 2 (6-2023)
Abstract
We report a simple and practical approach for the easy production of superhydrophobic coatings based on TiO2-SiO2@PDMS. In this study, we used tetraethylorthosilicate (TEOS) and titanium tetraisopropoxide (TTIP) as a precursor for the sol-gel synthesis of SiO2 and TiO2, respectively. Afterward, the surface of nanoparticles was modified by 1,1,1,3,3,3-hexamethyldisilazane (HMDS) before being combined with polydimethylsiloxane (PDMS). The hydrophobic property of coatings was evaluated by static contact angle measurements. The phase composition and structural evolution of the coatings were examined by X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. It was shown that changing the weight ratio of the solution composition of the coating can affect the hydrophobicity of the surface. The best sample has shown a superhydrophobic property with a 153˚ contact angle which contained (75%TiO2-25%SiO2) and PDMS at a weight ratio of 1:1. Moreover, the results showed that the superhydrophobic coating retains its hydrophobic properties up to a temperature of 450 ˚C, and at higher temperatures, it converts to a super hydrophilic with a water contact angle close to 0 ˚. The SiO2-TiO2@PDMS coating degrades methylene blue by about 55% and was shown to be capable of photocatalytically decomposing organic pollutants.