Search published articles


Showing 3 results for Thermal Shock

Chandler H.w.,
Volume 2, Issue 2 (6-2005)
Abstract

Being brittle and having low thermal conductivity, refractories suffer damage and sometimes fail in service as a result of thermal shock. While the approach of those making fine-grained technical ceramics is to make their products sufficiently strong to withstand thermal stresses the refractory technologist is more cunning. He uses, often little known, devices to provide resistance to thermal shock that minimise but do not eliminate damage to the component. In this paper the basic equations of thermal conduction and elasticity are presented and followed by some immediate results that should guide the designer of components subject to severe thermal environments. The influence of size and shape of the refractory components is then discussed along with ways in which refractory producers can engineer the thermal and mechanical properties. In particular, the methods used to tailor fracture behavior to optimize the thermal shock resistance are treated in some detail.
M. Adjabshiri, S. Sharafi,
Volume 4, Issue 1 (6-2007)
Abstract

Abstract: Strength at elevated temperatures and thermal shock resistance of austempered ductile irons at high temperatures has been less intentioned, because of instability of ausferrite phase. In this research the tensile properties of this iron and pearlitic ductile cast iron have been investigated by short time high temperature tensile tests. Also thermal shock tests were done at the molten lead bath at 1000 􀁱C . In these experiments, at first samples were immersed partially in the molten lead bath for 25 seconds and then either cooled in air or quenched in water. Results of short time high temperature tensile and thermal shock tests showed that ADI samples have higher strength and shock resistance than the pearlitic ductile samples.
M. Ghassemi Kakroudi,
Volume 5, Issue 4 (12-2008)
Abstract

Abstract: Refractory materials containing cordierite (2MgO.2Al2O3.5SiO2) and mullite (3Al2O3.2SiO2) are used as support in furnaces, because of their low thermal expansion properties which confer them a very good ability to thermal shock resistance. Composed of two phases presenting very different CTE (1.5–3×10-6 for cordierite and 4–6×10-6 K-1 for mullite), these materials can develop damage during thermal cycling due to internal stresses. The resulting network of microcracks is well known to improved thermal shock resistance of materials, since it usually involves a significant decrease in their elastic properties. This paper is devoted to the characterisation of the damage generated by this CTE mismatch, thanks to the application of a specific ultrasonic device at high temperature.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb